Решу ЕГЭ задание №5 по математике 11 класс профильный уровень с ответами и решением для практики и подготовки, задание 5 профильного ЕГЭ по математике – это основы стереометрии.
- Скачать задания куб, прямоугольный параллелепипед
- Скачать задания составные многогранники
- Скачать задания площадь поверхности многогранника
- Скачать задания призма
- Скачать задания пирамида
- Скачать задания цилиндр, конус шар
- Скачать задания комбинация тел
Куб, прямоугольный параллелепипед решу задания и ответы:
Составные многогранники решу задания и ответы:
Площадь поверхности многогранника решу задания и ответы:
Призма решу задания и ответы:
Пирамида задания и ответы:
Цилиндр и конус шар задания и ответы:
Комбинация тел задания и ответы:
Задания и ответы:
1)Площадь поверхности куба равна 18. Найдите его диагональ.
Правильный ответ: 3
2)Объем куба равен 8. Найдите площадь его поверхности.
Правильный ответ: 24
3)Если каждое ребро куба увеличить на 1, то его площадь поверхности увеличится на 54. Найдите ребро куба.
Правильный ответ: 4
4)Во сколько раз увеличится объем куба, если его ребра увеличить в три раза?
Правильный ответ: 27
5)Диагональ куба равна 12 . Найдите его объем.
Правильный ответ: 8
6)Объем куба равен 24 3 . Найдите его диагональ.
Правильный ответ: 6
7)Если каждое ребро куба увеличить на 1, то его объем увеличится на 19. Найдите ребро куба.
Правильный ответ: 2
8)Диагональ куба равна 1. Найдите площадь его поверхности.
Правильный ответ: 2
9)Площадь поверхности куба равна 24. Найдите его объем.
Правильный ответ: 8
10)Объем одного куба в 8 раз больше объема другого куба. Во сколько раз площадь поверхности первого куба больше площади поверхности второго куба?
Правильный ответ: 4
11)В кубе ABCDA1B1C1D1 точка K — середина ребра AA1, точка L — середина ребра A1B1, точка M — середина ребра A1D1. Найдите угол MLK. Ответ дайте в градусах.
Правильный ответ: 60
12)В кубе ABCDA1B1C1D1 найдите угол между прямыми AD1 и B1D1. Ответ дайте в градусах.
Правильный ответ: 60
13)Два ребра прямоугольного параллелепипеда, выходящие из одной вершины, равны 3 и 4. Площадь поверхности этого параллелепипеда равна 94. Найдите третье ребро, выходящее из той же вершины.
Правильный ответ: 5
14)Два ребра прямоугольного параллелепипеда, выходящие из одной вершины, равны 1, 2. Площадь поверхности параллелепипеда равна 16. Найдите его диагональ.
Правильный ответ: 3
15)Прямоугольный параллелепипед описан около единичной сферы. Найдите его площадь поверхности.
Правильный ответ: 24
16)Площадь грани прямоугольного параллелепипеда равна 12. Ребро, перпендикулярное этой грани, равно 4. Найдите объем параллелепипеда.
Правильный ответ: 48
17)Объем прямоугольного параллелепипеда равен 24. Одно из его ребер равно 3. Найдите площадь грани параллелепипеда, перпендикулярной этому ребру.
Правильный ответ: 8
18)Объем прямоугольного параллелепипеда равен 60. Площадь одной его грани равна 12. Найдите ребро параллелепипеда, перпендикулярное этой грани.
Правильный ответ: 5
19)Два ребра прямоугольного параллелепипеда, выходящие из одной вершины, равны 2 и 6. Объем параллелепипеда равен 48. Найдите третье ребро параллелепипеда, выходящее из той же вершины.
Правильный ответ: 4
20)Три ребра прямоугольного параллелепипеда, выходящие из одной вершины, равны 4, 6, 9. Найдите ребро равновеликого ему куба.
Правильный ответ: 6
21)Два ребра прямоугольного параллелепипеда, выходящие из одной вершины, равны 2, 4. Диагональ параллелепипеда равна 6. Найдите объем параллелепипеда.
Правильный ответ: 32
22)Два ребра прямоугольного параллелепипеда, выходящие из одной вершины, равны 2, 3. Объем параллелепипеда равен 36. Найдите его диагональ.
Правильный ответ: 7
23)Одна из граней прямоугольного параллелепипеда – квадрат. Диагональ параллелепипеда равна 8 и образует с плоскостью этой грани угол 45o . Найдите объем параллелепипеда.
Правильный ответ: 4
24)Диагональ прямоугольного параллелепипеда равна 8 и образует углы 30o , 30o и 45o с плоскостями граней параллелепипеда. Найдите объем параллелепипеда.
Правильный ответ: 4
25)Два ребра прямоугольного параллелепипеда, выходящие из одной вершины, равны 2, 4. Диагональ параллелепипеда равна 6. Найдите площадь поверхности параллелепипеда.
Правильный ответ: 64
26)Два ребра прямоугольного параллелепипеда, выходящие из одной вершины, равны 1, 2. Объем параллелепипеда равен 6. Найдите площадь его поверхности.
Правильный ответ: 22
27)Объем параллелепипеда ABCDA1B1C1D1 равен 4,5. Найдите объем треугольной пирамиды AD1CB1.
Правильный ответ: 1,5
28)Найдите объем многогранника, вершинами которого являются точки A, D, A1, B, C, B1 прямоугольного параллелепипеда ABCDA1B1C1D1, у которого AB = 3, AD = 4, AA1 = 5.
Правильный ответ: 30
29)Найдите объем многогранника, вершинами которого являются точки A, B, C, D1 прямоугольного параллелепипеда ABCDA1B1C1D1, у которого AB = 4, AD = 3, AA1 = 4.
Правильный ответ: 8
30)Найдите объем многогранника, вершинами которого являются точки A1, B, C, C1, B1 прямоугольного параллелепипеда ABCDA1B1C1D1, у которого AB = 4, AD = 3, AA1 = 4.
Правильный ответ: 16
31)Найдите объем многогранника, вершинами которого являются точки A, B, C, B1 прямоугольного параллелепипеда ABCDA1B1C1D1, у которого AB = 3, AD = 3, AA1 = 4.
Правильный ответ: 3
32)Найдите объем многогранника, вершинами которого являются точки A, B, B1, C1 прямоугольного параллелепипеда ABCDA1B1C1D1, у которого AB = 5, AD = 3, AA1 = 4.
Правильный ответ: 10
33)Найдите угол ABD1 прямоугольного параллелепипеда, для которого AB = 5, AD = 4, AA1 = 3. Ответ дайте в градусах.
Правильный ответ: 45
34)Найдите угол C1BC прямоугольного параллелепипеда, для которого AB = 5, AD = 4, AA1 = 4. Ответ дайте в градусах.
Правильный ответ: 45
35)Найдите угол DBD1 прямоугольного параллелепипеда, для которого AB = 4, AD = 3, AA1 = 5. Ответ дайте в градусах.
Правильный ответ: 45
36)В прямоугольном параллелепипеде ABCDA1B1C1D1 известно, что AC1 = 13, C1D1 = 3, B1C1 = 12. Найдите длину ребра AA1.
Правильный ответ: 4
37)В прямоугольном параллелепипеде ABCDA1B1C1D1 известно, что BB1 = 11, C1D1 = 16, B1C1 = 8. Найдите длину диагонали DB1.
Правильный ответ: 21
38)В прямоугольном параллелепипеде ABCDA1B1C1D1 ребро AB 2 , ребро AD 5 , ребро 1 AA 2 . Точка K — середина ребра BB1. Найдите площадь сечения, проходящего через точки A1, D1 и K.
Правильный ответ: 5
39)В прямоугольном параллелепипеде ABCDA1B1C1D1 известны ребра AB = 24, AD = 10, AA1 =22. Найдите площадь сечения, проходящего через точки A, A1 и С.
Правильный ответ: 572
40)В прямоугольном параллелепипеде ABCDA1B1C1D1 известны ребра AB = 8, AD = 6, AA1 =21. Найдите синус угла между прямыми CD и A1C1.
Правильный ответ: 0,6
41)Найдите расстояние между вершинами A и C2 многогранника, изображенного на рисунке. Все двугранные углы многогранника прямые.
Правильный ответ: 3
42)Найдите квадрат расстояния между вершинами D и C2 многогранника, изображенного на рисунке. Все двугранные углы многогранника прямые.
Правильный ответ: 5
43)Найдите расстояние между вершинами B1 и D2 многогранника, изображенного на рисунке. Все двугранные углы многогранника прямые.
Правильный ответ: 3
44)Найдите угол CAD2 многогранника, изображенного на рисунке. Все двугранные углы многогранника прямые. Ответ дайте в градусах.
Правильный ответ: 60
45)Найдите угол ABD многогранника, изображенного на рисунке. Все двугранные углы многогранника прямые. Ответ дайте в градусах.
Правильный ответ: 45
46)Найдите тангенс угла B2A2C2 многогранника, изображенного на рисунке. Все двугранные углы многогранника прямые.
Правильный ответ: 2
47)Найдите квадрат расстояния между вершинами B2 и D3 многогранника, изображенного на рисунке. Все двугранные углы многогранника прямые.
Правильный ответ: 11
48)Найдите квадрат расстояния между вершинами B и D2 многогранника, изображенного на рисунке. Все двугранные углы многогранника прямые.
Правильный ответ: 14
49)Найдите квадрат расстояния между вершинами A и C3 многогранника, изображенного на рисунке. Все двугранные углы многогранника прямые.
Правильный ответ: 17
50)Найдите тангенс угла C2C3B2 многогранника, изображенного на рисунке. Все двугранные углы многогранника прямые.
Правильный ответ: 3
51)Найдите тангенс угла ABB3 многогранника, изображенного на рисунке. Все двугранные углы многогранника прямые.
Правильный ответ: 2
52)Найдите тангенс угла C3D3B3 многогранника, изображенного на рисунке. Все двугранные углы многогранника прямые.
Правильный ответ: 3
53)Найдите квадрат расстояния между вершинами E и B2 многогранника, изображенного на рисунке. Все двугранные углы многогранника прямые.
Правильный ответ: 53
54)Найдите угол D2EF многогранника, изображенного на рисунке. Все двугранные углы многогранника прямые. Ответ дайте в градусах.
Правильный ответ: 45
55)Найдите угол EAD2 многогранника, изображенного на рисунке. Все двугранные углы многогранника прямые. Ответ дайте в градусах.
Правильный ответ: 60
56)Найдите площадь поверхности многогранника, изображенного на рисунке (все двугранные углы прямые).
Правильный ответ: 18
57)Найдите площадь поверхности многогранника, изображенного на рисунке (все двугранные углы прямые).
Правильный ответ: 76
58)Найдите площадь поверхности многогранника, изображенного на рисунке (все двугранные углы прямые).
Правильный ответ: 92
59)В сосуд, имеющий форму правильной треугольной призмы, налили 2300 см3 воды и полностью в нее погрузили деталь. При этом уровень жидкости в сосуде поднялся с отметки 25 см до отметки 27 см. Чему равен объем детали? Ответ выразите в cм3 .
Правильный ответ: 184
60)В сосуд, имеющий форму правильной треугольной призмы, налили воду. Уровень воды достигает 80 см. На какой высоте будет находиться уровень воды, если ее перелить в другой такой же сосуд, у которого сторона основания в 4 раза больше, чем у первого? Ответ выразите в см.
Правильный ответ: 5
61)Найдите площадь боковой поверхности правильной шестиугольной призмы, сторона основания которой равна 5, а высота — 10.
Правильный ответ: 300
62)Найдите площадь поверхности прямой призмы, в основании которой лежит ромб с диагоналями, равными 6 и 8, и боковым ребром, равным 10.
Правильный ответ: 248
63)Найдите боковое ребро правильной четырехугольной призмы, если сторона ее основания равна 5, а площадь поверхности равна 190.
Правильный ответ: 7
64)Через среднюю линию основания треугольной призмы, площадь боковой поверхности которой равна 24, проведена плоскость, параллельная боковому ребру. Найдите площадь боковой поверхности отсеченной треугольной призмы.
Правильный ответ: 12
65)Основанием прямой треугольной призмы служит прямоугольный треугольник с катетами 3 и 5. Объем призмы равен 30. Найдите ее боковое ребро.
Правильный ответ: 4
66)Найдите объем правильной шестиугольной призмы, стороны основания которой равны 1, а боковые ребра равны 3 .
Правильный ответ: 4,5
67)Через среднюю линию основания треугольной призмы, объем которой равен 32, проведена плоскость, параллельная боковому ребру. Найдите объем отсеченной треугольной призмы.
Правильный ответ: 8
68)Через среднюю линию основания треугольной призмы проведена плоскость, параллельная боковому ребру. Объем отсеченной треугольной призмы равен 5. Найдите объем исходной призмы.
Правильный ответ: 20
69)Найдите объем призмы, в основаниях которой лежат правильные шестиугольники со сторонами 2, а боковые ребра равны 2 3 и наклонены к плоскости основания под углом 30o .
Правильный ответ: 18
70)От треугольной призмы, объем которой равен 6, отсечена треугольная пирамида плоскостью, проходящей через сторону одного основания и противоположную вершину другого основания. Найдите объем оставшейся части.
Правильный ответ: 4
71)Основанием прямой треугольной призмы служит прямоугольный треугольник с катетами 6 и 8, высота призмы равна 10. Найдите площадь ее поверхности.
Правильный ответ: 288
72)В основании прямой призмы лежит ромб с диагоналями, равными 6 и 8. Площадь ее поверхности равна 248. Найдите боковое ребро этой призмы.
Правильный ответ: 10
73)В треугольной призме две боковые грани перпендикулярны. Их общее ребро равно 10 и отстоит от других боковых ребер на 6 и 8. Найдите площадь боковой поверхности этой призмы.
Правильный ответ: 240
74)Основанием прямой треугольной призмы служит прямоугольный треугольник с катетами 6 и 8. Площадь ее поверхности равна 288. Найдите высоту призмы.
Правильный ответ: 10
75)Через среднюю линию основания треугольной призмы проведена плоскость, параллельная боковому ребру. Площадь боковой поверхности отсеченной треугольной призмы равна 8. Найдите площадь боковой поверхности исходной призмы.
Правильный ответ: 16
76)Объем куба равен 12. Найдите объем треугольной призмы, отсекаемой от него плоскостью, проходящей через середины двух ребер, выходящих из одной вершины и параллельной третьему ребру, выходящему из этой же вершины.
Правильный ответ: 1,5
77)Найдите объем многогранника, вершинами которого являются точки A, B, C, A1 правильной треугольной призмы ABCA1B1C1, площадь основания которой равна 2, а боковое ребро равно 3.
Правильный ответ: 2
78)Найдите объем многогранника, вершинами которого являются точки A, B, C, A1, C1 правильной треугольной призмы ABCA1B1C1, площадь основания которой равна 3, а боковое ребро равно 2.
Правильный ответ: 4
79)Найдите объем многогранника, вершинами которого являются точки A1, B1, B, C правильной треугольной призмы ABCA1B1C1, площадь основания которой равна 4, а боковое ребро равно 3.
Правильный ответ: 4
80)Найдите объем многогранника, вершинами которого являются точки A, B, C, D, E, F, A1 правильной шестиугольной призмы ABCDEFA1B1C1D1E1F1, площадь основания которой равна 4, а боковое ребро равно 3.
Правильный ответ: 4
81)Найдите объем многогранника, вершинами которого являются точки A, B, C, A1, B1, C1 правильной шестиугольной призмы ABCDEFA1B1C1D1E1F1, площадь основания которой равна 6, а боковое ребро равно 3.
Правильный ответ: 3
82)Найдите объем многогранника, вершинами которого являются точки A, B, D, E, A1, B1, D1, E1 правильной шестиугольной призмы ABCDEFA1B1C1D1E1F1, площадь основания которой равна 6, а боковое ребро равно 2.
Правильный ответ: 8
83)Найдите объем многогранника, вершинами которого являются точки A, B, C, D, A1, B1, C1, D1 правильной шестиугольной призмы ABCDEFA1B1C1D1E1F1, площадь основания которой равна 6, а боковое ребро равно 2.
Правильный ответ: 6
84)Стороны основания правильной четырехугольной пирамиды равны 10, боковые ребра равны 13. Найдите площадь поверхности этой пирамиды.
Правильный ответ: 340
85)Стороны основания правильной шестиугольной пирамиды равны 10, боковые ребра равны 13. Найдите площадь боковой поверхности этой пирамиды.
Правильный ответ: 360
86)Объем параллелепипеда ABCDA1B1C1D1 равен 9. Найдите объем треугольной пирамиды ABCA1.
Правильный ответ: 1,5
87)Во сколько раз увеличится объем правильного тетраэдра, если все его ребра увеличить в два раза?
Правильный ответ: 8
88)Основанием пирамиды является прямоугольник со сторонами 3 и 4. Ее объем равен 16. Найдите высоту этой пирамиды.
Правильный ответ: 4
89)Найдите объем правильной треугольной пирамиды, стороны основания которой равны 1, а высота равна 3 .
Правильный ответ: 0,25
90)Найдите высоту правильной треугольной пирамиды, стороны основания которой равны 2, а объем равен 3 .
Правильный ответ: 3
91)Во сколько раз увеличится объем пирамиды, если ее высоту увеличить в четыре раза?
Правильный ответ: 4
92)В правильной четырехугольной пирамиде высота равна 6, боковое ребро равно 10. Найдите ее объем.
Правильный ответ: 256
93)Основанием пирамиды служит прямоугольник, одна боковая грань перпендикулярна плоскости основания, а три другие боковые грани наклонены к плоскости основания под углом 60o . Высота пирамиды равна 6. Найдите объем пирамиды.
Правильный ответ: 48
94)Боковые ребра треугольной пирамиды взаимно перпендикулярны, каждое из них равно 3. Найдите объем пирамиды.
Правильный ответ: 4,5
95)Объем треугольной пирамиды SABC, являющейся частью правильной шестиугольной пирамиды SABCDEF, равен 1. Найдите объем шестиугольной пирамиды.
Правильный ответ: 6
96)Объем правильной четырехугольной пирамиды SABCD равен 12. Точка E — середина ребра SB. Найдите объем треугольной пирамиды EABC.
Правильный ответ: 3
97)От треугольной пирамиды, объем которой равен 12, отсечена треугольная пирамида плоскостью, проходящей через вершину пирамиды и среднюю линию основания. Найдите объем отсеченной треугольной пирамиды.
Правильный ответ: 3
98)Объем треугольной пирамиды равен 15. Плоскость проходит через сторону основания этой пирамиды и пересекает противоположное боковое ребро в точке, делящей его в отношении 1:2, считая от вершины пирамиды. Найдите больший из объемов пирамид, на которые плоскость разбивает исходную пирамиду.
Правильный ответ: 10
99)Во сколько раз увеличится площадь поверхности правильного тетраэдра, если все его ребра увеличить в два раза?
Правильный ответ: 4
100)Найдите площадь поверхности правильной четырехугольной пирамиды, стороны основания которой равны 6 и высота равна 4.
Правильный ответ: 96
101)Во сколько раз увеличится площадь поверхности октаэдра, если все его ребра увеличить в 3 раза?
Правильный ответ: 9
102)Найдите площадь боковой поверхности правильной четырехугольной пирамиды, сторона основания которой равна 6 и высота равна 4.
Правильный ответ: 60
103)Во сколько раз увеличится площадь поверхности пирамиды, если все ее ребра увеличить в 2 раза?
Правильный ответ: 4
104)Ребра правильного тетраэдра равны 1. Найдите площадь сечения, проходящего через середины четырех его ребер.
Правильный ответ: 0,25
105)Найдите объем пирамиды, высота которой равна 6, а основание — прямоугольник со сторонами 3 и 4.
Правильный ответ: 24
106)В правильной четырехугольной пирамиде высота равна 12, объем равен 200. Найдите боковое ребро этой пирамиды.
Правильный ответ: 13
107)Сторона основания правильной шестиугольной пирамиды равна 2, боковое ребро равно 4. Найдите объем пирамиды.
Правильный ответ: 12
108)Объем правильной шестиугольной пирамиды 6. Сторона основания равна 1. Найдите боковое ребро.
Правильный ответ: 7
109)Сторона основания правильной шестиугольной пирамиды равна 4, а угол между боковой гранью и основанием равен 45o . Найдите объем пирамиды.
Правильный ответ: 48
110)Объем параллелепипеда ABCDA1B1C1D1 равен 12. Найдите объем треугольной пирамиды B1ABC.
Правильный ответ: 2