Пробник ОГЭ 2023 по математике для 9 класса 4 новых тренировочных варианта заданий в формате реального экзамена с ответами и решением для подготовки к ОГЭ 2023 года.
- Скачать 1 вариант
- Скачать 2 вариант
- Скачать 3 вариант
- Скачать 4 вариант
- Скачать ответы и решения
- Другие варианты ОГЭ по математике
1 вариант пробник ОГЭ 2023
1variant_oge2023_mat_9klass_otveti2 вариант пробник ОГЭ 2023
2variant_oge2023_mat_9klass_otveti3 вариант пробник ОГЭ 2023
3variant_oge2023_mat_9klass_otveti4 вариант пробник ОГЭ 2023
4variant_oge2023_mat_9klass_otvetiЗадания и ответы с 1 варианта
На рисунке изображён план двухкомнатной квартиры в многоэтажном жилом доме. Сторона одной клетки на плане соответствует 0,4 м, а условные обозначения двери и окна приведены в правой части рисунка. Вход в квартиру находится в коридоре. Слева от входа в квартиру находится санузел, а в противоположном конце коридора – дверь в кладовую. Рядом с кладовой находится спальня, из которой можно пойти на одну из застекленных лоджий. Самое большое по площади помещение – гостиная, откуда можно попасть в коридор и на кухню. Из кухни также можно попасть на застекленную лоджию.
1. Для объектов, указанных в таблице, определите, какими цифрами они обозначены на плане. Заполните таблицу, в бланк ответов перенесите последовательность четырёх цифр.
2. Паркетная доска размером 20 см на 80 см продается в упаковках по 12 штук. Сколько упаковок паркетной доски понадобилось, чтобы выложить пол в спальне?
3. Найдите площадь гостиной. Ответ дайте в квадратных метрах.
4. На сколько процентов площадь коридора больше площади кладовой?
5. В квартире планируется установить стиральную машину. Характеристики стиральных машин, условия подключения и доставки приведены в таблице. Планируется купить стиральную машину с фронтальной загрузкой, по глубине не превосходящую 42 см. Сколько рублей будет стоить наиболее дешёвый подходящий вариант вместе с подключением и доставкой?
7. На координатной прямой отмечены точки A, B. C и D соответствуют числам – 0,032; 0,023; 0,302; – 0,203. Какой точке соответствует число – 0,203?
9. Решите уравнение – 2x–7= – 4x.
10. В лыжных гонках участвуют 7 спортсменов из России, 1 спортсмена из Швеции и 2 спортсмена из Норвегии. Порядок, в котором спортсмены стартуют, определяется жребием. Найдите вероятность того, что первым будет стартовать спортсмен из Швеции.
12. В фирме «Эх, прокачу!» стоимость поездки на такси (в рублях) длительностью более 5 минут рассчитывается по формуле C = 150+11 ⋅ (t − 5), где t — длительность поездки, выраженная в минутах. Пользуясь этой формулой, рассчитайте стоимость 13-минутной поездки. Ответ дайте в рублях.
14. В амфитеатре 14 рядов. В первом ряду 18 мест, а в каждом следующем на 2 места больше, чем в предыдущем. Сколько мест в девятом ряду амфитеатра?
15. В треугольнике ABC известно, что угол BAC равен 84º, AD – биссектриса. Найдите угол BAD. Ответ дайте в градусах.
16. В треугольнике ABC известно, что AC=8, BC=15, угол C равен 90º. Найдите радиус описанной около этого треугольника окружности.
17. Диагонали AC и BD прямоугольника ABCD пересекаются в точке O, BO=24, AB=45. Найдите AC.
18. На клетчатой бумаге с размером клетки 1 1 изображён ромб. Найдите площадь этого ромба.
19. Какое из следующих утверждений верно? 1) Диагонали равнобедренной трапеции равны. 2) Если три угла одного треугольника равны соответственно трем углам другого треугольника, то такие треугольника равны. 3) Тангенс любого острого угла меньше единицы.
21. Теплоход проходит по течению реки до пункта назначения 80 км и после стоянки возвращается в пункт отправления. Найдите скорость теплохода в неподвижной воде, если скорость течения равна 5 км/ч, стоянка длится 23 часа, а в пункт отправления теплоход возвращается через 35 часов после отплытия из него.
23. Точка H является основанием высоты BH , проведённой из вершины прямого угла B прямоугольного треугольника ABC . Окружность с диаметром BH пересекает стороны AB и CB в точках P и K соответственно. Найдите PK , если BH 14 .
24. На средней линии трапеции ABCD с основаниями AD и BC выбрали произвольную точку K . Докажите, что сумма площадей треугольников BKC и AKD равна половине площади трапеции.
25. На стороне BC остроугольного треугольника ABC как на диаметре построена полуокружность, пересекающая высоту AD в точке M , AD 16 , MD 4 , H — точка пересечения высот треугольника ABC . Найдите AH .
Задания и ответы с 2 варианта
1. Для объектов, указанных в таблице, определите, какими цифрами они обозначены на плане. Заполните таблицу, в бланк перенесите последовательность четырёх цифр без пробелов, запятых и других дополнительных символов.
2. Паркетная доска размером 20 см на 80 см продается в упаковках по 12 штук. Сколько упаковок паркетной доски понадобилось, чтобы выложить пол в кладовой?
3. Найдите площадь гостиной. Ответ дайте в квадратных метрах.
4. На сколько процентов площадь кухни больше площади санузла?
5. В квартире планируется установить стиральную машину. Характеристики стиральных машин, условия подключения и доставки приведены в таблице. Планируется купить стиральную машину с фронтальной загрузкой, вместимостью не менее 6 кг. Сколько рублей будет стоить наиболее дешёвый подходящий вариант вместе с подключением и доставкой?
7. На координатной прямой отмечены точки A, B. C и D соответствуют числам – 0,74; – 0,047; 0,07; – 0,407. Какой точке соответствует число – 0,047?
9. Решите уравнение x+3= – 9x.
10. В лыжных гонках участвуют 13 спортсменов из России, 2 спортсмена из Норвегии и 5 спортсменов из Швеции. Порядок, в котором спортсмены стартуют, определяется жребием. Найдите вероятность того, что первым будет стартовать спортсмен не из России.
12. В фирме «Эх, прокачу!» стоимость поездки на такси (в рублях) длительностью более 5 минут рассчитывается по формуле C = 150+11 ⋅ (t − 5), где t — длительность поездки, выраженная в минутах. Пользуясь этой формулой, рассчитайте стоимость 16-минутной поездки. Ответ дайте в рублях.
14. В амфитеатре 15 рядов. В первом ряду 20 мест, а в каждом следующем на 2 места больше, чем в предыдущем. Сколько мест в десятом ряду амфитеатра?
15. В треугольнике ABC известно, что угол BAC равен 64º, AD – биссектриса. Найдите угол BAD. Ответ дайте в градусах.
16. В треугольнике ABC известно, что AC=16, BC=12, угол C равен 90º. Найдите радиус описанной около этого треугольника окружности.
17. Диагонали AC и BD прямоугольника ABCD пересекаются в точке O, BO=11, AB=10. Найдите AC.
19. Какие из следующих утверждений верны? 1) Если диагонали параллелограмма равны, то этот параллелограмм является ромбом. 2) Сумма острых углов прямоугольного треугольника равна 90 градусам. 3) Через точку, не лежащую на данной прямой, можно провести прямую, параллельную этой прямой.
21. Теплоход проходит по течению реки до пункта назначения 165 км и после стоянки возвращается в пункт отправления. Найдите скорость течения, если скорость теплохода в неподвижной воде равна 26 км/ч, стоянка длится 5 часов, а в пункт отправления теплоход возвращается через 18 часов после отплытия из него.
23. Точка H является основанием высоты BH , проведённой из вершины прямого угла B прямоугольного треугольника ABC . Окружность с диаметром BH пересекает стороны AB и CB в точках P и K соответственно. Найдите BH , если PK 13.
24. На средней линии трапеции ABCD с основаниями AD и BC выбрали произвольную точку K . Докажите, что сумма площадей треугольников BKC и AKD равна половине площади трапеции.
25. На стороне BC остроугольного треугольника ABC как на диаметре построена полуокружность, пересекающая высоту AD в точке M , AD 80 , MD 64, H — точка пересечения высот треугольника ABC . Найдите AH .
Задания и ответы с 3 варианта
Полина летом отдыхает у дедушки в деревне Ясной. В четверг они собираются съездить на велосипедах в село Майское в магазин. Из деревни Ясная в село Майское можно проехать по прямой лесной дорожке. Есть более длинный путь: по прямолинейному шоссе через деревню Камышёвку до деревни Хомяково, где нужно повернуть под прямым углом налево на другое шоссе, ведущее в село Майское. Есть и третий маршрут: в деревне Камышёвке можно свернуть на прямую тропинку в село Майское, которая идёт мимо пруда. Лесная дорожка и тропинка образуют с шоссе прямоугольные треугольники. По шоссе Полина с дедушкой едут со скоростью 20 км/ч, а по лесной дорожке и тропинке — со скоростью 15 км/ч. На плане изображено взаимное расположение населённых пунктов, длина стороны каждой клетки равна 2 км.
1. Пользуясь описанием, определите, какими цифрами на плане обозначены населённые пункты. Заполните таблицу, в бланк ответов перенесите последовательность трёх цифр без пробелов, запятых и других символов.
2. Сколько километров проедут Полина с дедушкой от деревни Камышёвка до села Майское, если они поедут по шоссе через деревню Хомяково?
3. Найдите расстояние от деревни Камышёвка до села Майское по прямой. Ответ дайте в километрах.
4. Сколько минут затратят на дорогу из деревни Ясная в село Майское Полина с дедушкой, если они поедут сначала по шоссе, а затем свернут в Камышёвке на прямую тропинку, которая проходит мимо пруда?
5. В таблице указана стоимость (в рублях) некоторых продуктов в четырёх магазинах, расположенных в деревне Ясная, селе Майское, деревне Камышёвка и деревне Хомяково. Полина с дедушкой хотят купить 2 л молока, 3 кг говядины и 2 кг картофеля. В каком магазине такой набор продуктов будет стоить дешевле всего? В ответ запишите стоимость данного набора в этом магазине.
10. Родительский комитет закупил 10 пазлов для подарков детям в связи с окончанием учебного года, из них 4 с машинами и 6 с видами городов. Подарки распределяются случайным образом между 10 детьми, среди которых есть Володя. Найдите вероятность того, что Володе достанется пазл с машиной.
14. В ходе биологического эксперимента в чашку Петри с питательной средой поместили колонию микроорганизмов массой 3 мг. Каждые 20 минут масса колонии увеличивается в 3 раза. Найдите массу колонии микроорганизмов через 80 минут после начала эксперимента. Ответ дайте в миллиграммах.
16. Радиус окружности, вписанной в равносторонний треугольник, равен 2 3 . Найдите длину стороны этого треугольника.
17. Диагональ прямоугольника образует угол 74º с одной из его сторон. Найдите острый угол между диагоналями этого прямоугольника. Ответ дайте в градусах.
18. На клетчатой бумаге с размером клетки 1 1 изображён параллелограмм. Найдите площадь этого параллелограмма.
19. Какое из следующих утверждений верно? 1) Диагонали прямоугольника точкой пересечения делятся пополам. 2) Точка пересечения двух окружностей равноудалена от центров этих окружностей. 3) Площадь любого параллелограмма равна произведению длин его сторон.
21. Из двух городов одновременно навстречу друг другу отправились два велосипедиста. Проехав некоторую часть пути, первый велосипедист сделал остановку на 51 минуту, а затем продолжил движение до встречи со вторым велосипедистом. Расстояние между городами составляет 251 км, скорость первого велосипедиста равна 10 км/ч, скорость второго — 20 км/ч. Определите расстояние от города, из которого выехал второй велосипедист, до места встречи.
23. Найдите боковую сторону AB трапеции ABCD , если углы ABC и BCD равны соответственно 45 и 150 , а CD 32.
24. Внутри параллелограмма ABCD выбрали произвольную точку F . Докажите, что сумма площадей треугольников BFC и AFD равна половине площади параллелограмма.