ЕГЭ 2024

29 мая 3 варианта пробника ЕГЭ 2024 по математике 11 класс профильный уровень с ответами

Автор

Новые тренировочные варианты формата пробника ЕГЭ 2024 по математике 11 класс профильный уровень задания с ответами и решением для подготовки к реальному экзамену, который пройдёт у 11 классов 31 мая 2024 из открытого банка заданий ФИПИ от Пифагора. Также опубликован авторский прогноз на ЕГЭ 2024 года.

→ Скачать 1 вариант

→ Скачать 2 вариант

→ Скачать 3 вариант

Тренировочный 1 вариант ЕГЭ 2024 математика профиль

variant1-profil-ege2024-mat-11klass-2905

Видео решение и ответы 1 варианта

1. Площадь параллелограмма 𝐴𝐵𝐶𝐷 равна 132. Точка 𝐺 − середина стороны 𝐶𝐷. Найдите площадь трапеции 𝐴𝐵𝐺𝐷.

2. Длины векторов 𝑎⃗ и 𝑏⃗⃗ равны 3 и 5, а угол между ними равен 60°. Найдите скалярное произведение 𝑎⃗ ∙ 𝑏⃗⃗.

3. Конус и цилиндр имеют общее основание и общую высоту (конус вписан в цилиндр). Вычислите объём цилиндра, если объём конуса равен 57.

4. На чемпионате по прыжкам в воду выступают 25 спортсменов, среди них 4 прыгуна из Италии и 6 прыгунов из Мексики. Порядок выступлений определяется жеребьёвкой. Найдите вероятность того, что двадцать четвёртым будет выступать прыгун из Италии.

5. Стрелок стреляет по одному разу в каждую из четырёх мишеней. Вероятность попадания в мишень при каждом отдельном выстреле равна 0,9. Найдите вероятность того, что стрелок попадёт в первую мишень и не попадёт в три последние.

6. Найдите корень уравнения 7 −6−𝑥 = 343.

8. На рисунке изображён график 𝑦 = 𝑓 ′ (𝑥) − производной функции 𝑓(𝑥). На оси абсцисс отмечены шесть точек: 𝑥1 , 𝑥2 , 𝑥3 , 𝑥4 , 𝑥5 , 𝑥6 . Сколько из этих точек лежит на промежутках возрастания функции 𝑓(𝑥)?

9. Перед отправкой тепловоз издал гудок с частотой 𝑓0 = 192 Гц. Чуть позже гудок издал подъезжающий к платформе тепловоз. Из-за эффекта Доплера частота второго гудка 𝑓 (в Гц) больше первого: она зависит от скорости тепловоза 𝜈 (в м/с) по закону 𝑓(𝜈) = 𝑓0 1− 𝜈 𝑐 (Гц), где 𝑐 — скорость звука (в м/с). Человек, стоящий на платформе, различает сигналы по тону, если они отличаются не менее чем на 8 Гц. Определите, с какой минимальной скоростью приближался к платформе тепловоз, если человек смог различить сигналы, а 𝑐 = 300 м/с. Ответ дайте в м/с.

10. Первая труба пропускает на 8 литров воды в минуту меньше, чем вторая. Сколько литров воды в минуту пропускает первая труба, если резервуар объёмом 180 литров она заполняет на 8 минут дольше, чем вторая труба?

11. На рисунке изображены графики функций видов 𝑓(𝑥) = 𝑎𝑥 2 + 𝑏𝑥 + 𝑐 и 𝑔(𝑥) = 𝑘𝑥, пересекающиеся в точках 𝐴 и 𝐵. Найдите абсциссу точки 𝐵.

12. а) Решите уравнение cos 𝑥 ∙ cos 2𝑥 = √2sin2𝑥 + cos 𝑥. б) Укажите корни этого уравнения, принадлежащие отрезку.

13. В основании прямой призмы 𝐴𝐵𝐶𝐷𝐴1𝐵1𝐶1𝐷1 лежит параллелограмм 𝐴𝐵𝐶𝐷 с углом 60° при вершине 𝐴. На рёбрах 𝐴1𝐵1 , 𝐵1𝐶1 и 𝐵𝐶 отмечены точки 𝑀, 𝐾 и 𝑁 соответственно так, что четырёхугольник 𝐴𝑀𝐾𝑁 − равнобедренная трапеция с основаниями 2 и 4. а) Докажите, что точка 𝑀 − середина ребра 𝐴1𝐵1 . б) Найдите высоту призмы, если её объём равен 16 и известно, что точка 𝐾 делит ребро 𝐵1𝐶1 в отношении 𝐵1𝐾:𝐾𝐶1 = 1: 3.

15. Решите неравенство (log0,25 2 (𝑥 + 3) − log4 (𝑥 2 + 6𝑥 + 9) + 1) ∙ log4 (𝑥 + 2) ≤ 0.

16. В июле 2025 года планируется взять кредит на десять лет в размере 600 тыс. рублей. Условия его возврата таковы: – каждый январь долг будет возрастать на 𝑟% по сравнению с концом предыдущего года; – с февраля по июнь каждого года необходимо оплатить одним платежом часть долга; – в июле 2026, 2027, 2028, 2029 и 2030 годов долг должен быть на какую-то одну и ту же величину меньше долга на июль предыдущего года; – в конце 2030 года долг составит 400 тыс. руб; – в июле 2031, 2032, 2033, 2034 и 2035 годов долг должен быть на другую одну и ту же величину меньше долга на июль предыдущего года; – к июлю 2035 года долг должен быть выплачен полностью. Найдите 𝑟, если общая сумма выплат после полного погашения кредита будет равна 1740 тыс. рублей.

17. Дан равносторонний треугольник 𝐴𝐵𝐶. На стороне 𝐴𝐶 выбрана точка 𝑀, серединный перпендикуляр к отрезку 𝐵𝑀 пересекает сторону 𝐴𝐵 в точке 𝐸, а сторону 𝐵𝐶 в точке 𝐾. а) Докажите, что угол 𝐴𝐸𝑀 равен углу 𝐶𝑀𝐾. б) Найдите отношение площадей треугольников 𝐴𝐸𝑀 и 𝐶𝑀𝐾, если 𝐴𝑀: 𝐶𝑀 = 1: 4.

19. Из пары натуральных чисел (𝑎; 𝑏), где 𝑎 > 𝑏, за один ход получают пару (𝑎 + 𝑏; 𝑎 − 𝑏). а) Можно ли за несколько таких ходов получить из пары (50; 9) пару, большее число в которой равно 200? б) Можно ли за несколько таких ходов получить из пары (50; 9) пару (408; 370)? в) Какое наименьшее 𝑎 может быть в паре (𝑎; 𝑏), из которой за несколько ходов можно получить пару (408; 370)?

Задания и ответы для 2 варианта Пифагор

variant2-profil-ege2024-mat-11klass-2905

Видео решение и ответы 2 варианта

1. Найдите центральный угол, если он на 28° больше острого вписанного угла, опирающегося на ту же дугу. Ответ дайте в градусах.

2. Даны векторы 𝑎⃗ (−13; 4) и 𝑏⃗⃗ (−6; 1). Найдите скалярное произведение 𝑎⃗ ∙ 𝑏⃗⃗.

3. Дано два цилиндра. Объём первого цилиндра равен 12. У второго цилиндра высота в три раза больше, а радиус основания в два раза меньше, чем у первого. Найдите объём второго цилиндра.

4. В чемпионате по гимнастике участвуют 70 спортсменок: 25 из США, 17 из Мексики, остальные из Канады. Порядок, в котором выступают гимнастки, определяется жребием. Найдите вероятность того, что спортсменка, выступающая первой, окажется из Канады.

5. Помещение освещается тремя лампами. Вероятность перегорания каждой лампы в течение года равна 0,8. Лампы перегорают независимо друг от друга. Найдите вероятность того, что в течение года хотя бы одна лампа не перегорит.

6. Найдите корень уравнения √28 − 2𝑥 = 2.

8. На рисунке изображены график функции 𝑦 = 𝑓(𝑥) и касательная к нему в точке с абсциссой 𝑥0 . Найдите значение производной функции 𝑓(𝑥) в точке 𝑥0 .

9. Водолазный колокол, содержащий 𝑣 = 2 моля воздуха при давлении 𝑝1 = 1,75 атмосферы, медленно опускают на дно водоёма. При этом происходит изотермическое сжатие воздуха до конечного давления 𝑝2 . Работа, совершаемая водой при сжатии воздуха, определяется выражением 𝐴 = 𝛼𝑣𝑇 log2 𝑝2 𝑝1 , где 𝛼 = 13,3 Дж моль∙К − постоянная, 𝑇 = 300 К – температура воздуха. Найдите, какое давление 𝑝2 (в атм) будет иметь воздух в колоколе, если при сжатии воздуха была совершена работа в 15960 Дж.

10. Теплоход проходит по течению реки до пункта назначения 384 км и после стоянки возвращается в пункт отправления. Найдите скорость теплохода в неподвижной воде, если скорость течения равна 4 км/ч, стоянка длится 8 часов, а в пункт отправления теплоход возвращается через 48 часов. Ответ дайте в км/ч.

11. На рисунке изображён график функции вида 𝑓(𝑥) = 𝑎 𝑥 . Найдите значение 𝑓(−4).

12. Найдите точку максимума функции 𝑦 = 𝑥 3 − 6𝑥 2 + 9𝑥 + 5.

13. а) Решите уравнение cos 2𝑥 + sin(−𝑥) − 1 = 0. б) Укажите корни этого уравнения, принадлежащие отрезку.

14. В кубе 𝐴𝐵𝐶𝐷𝐴1𝐵1𝐶1𝐷1 отмечены середины 𝑀 и 𝑁 отрезков 𝐴𝐵 и 𝐴𝐷 соответственно. а) Докажите, что прямые 𝐵1𝑁 и 𝐶𝑀 перпендикулярны. б) Найдите расстояние между этими прямыми, если 𝐵1𝑁 = 3√5.

16. В июле 2026 года планируется взять кредит на три года. Условия его возврата таковы: – каждый январь долг будет возрастать на 30% по сравнению с концом предыдущего года; – с февраля по июнь каждого года необходимо выплатить одним платежом часть долга; – платежи в 2027 и 2028 годах должны быть по 300 тыс. рублей; – к июлю 2029 года долг должен быть выплачен полностью. Какую сумму планируется взять в кредит, если известно, что платёж в 2029 году равен 860,6 тыс. рублей?

17. В треугольнике 𝐴𝐵𝐶 продолжения высоты 𝐶𝐶1 и биссектрисы 𝐵𝐵1 пересекают описанную окружность в точках 𝑁 и 𝑀 соответственно, ∠𝐴𝐵𝐶 = 40°, ∠𝐴𝐶𝐵 = 85°. а) Докажите, что 𝐵𝑀 = 𝐶𝑁. б) Прямые 𝐵𝐶 и 𝑀𝑁 пересекаются в точке 𝐷. Найдите площадь треугольника 𝐵𝐷𝑁, если его высота 𝐵𝐻 равна 7.

18. Найдите все значения параметра 𝑎, при которых уравнение 𝑥 2 − 𝑥 − 7𝑎 + 𝑎 2 = |7𝑥 − 𝑎| имеет 2 различных решения.

19. Есть три коробки: в первой коробке 97 камней, во второй – 104, в третьей пусто. За один ход разрешается взять по камню из двух коробок и положить в оставшуюся. а) Могло ли в первой коробке оказаться 97 камней, во второй – 89, в третьей – 15? б) Могло ли в третьей коробке оказаться 201 камень? в) Какое наибольшее число камней могло оказаться в третьей коробке?

Задания и ответы ЕГЭ 2024 профиль для 3 варианта

variant3-profil-ege2024-mat-11klass-2905

Видео решение и ответы 3 варианта

1. Острый угол 𝐵 прямоугольного треугольника равен 66°. Найдите угол между биссектрисой 𝐶𝐷 и медианой 𝐶𝑀, проведёнными из вершины прямого угла. Ответ дайте в градусах.

2. Даны векторы 𝑎⃗ (1; 2), 𝑏⃗⃗ (−3; 6) и 𝑐⃗ (4; −2). Найдите длину вектора 𝑎⃗ − 𝑏⃗⃗ + 𝑐⃗.

3. Конус и цилиндр имеют общее основание и общую высоту (конус вписан в цилиндр). Вычислите объём цилиндра, если объём конуса равен 57.

4. Фабрика выпускает сумки. В среднем 6 сумок из 75 имеют скрытые дефекты. Найдите вероятность того, что купленная сумка окажется без дефектов.

5. При выпечке хлеба производится контрольное взвешивание свежей буханки. Известно, что вероятность того, что масса окажется меньше 810 г, равна 0,96. Вероятность того, что масса окажется больше 790 г, равна 0,82. Найдите вероятность того, что масса буханки больше 790 г, но меньше 810 г.

8. На рисунке изображён график 𝑦 = 𝑓 ′ (𝑥) — производной функции 𝑓(𝑥), определенной на интервале (−19; 3). Найдите количество точек экстремума функции 𝑓(𝑥), принадлежащих отрезку [−17; −4].

9. К источнику с ЭДС 𝜀 = 180 В и внутренним сопротивлением 𝑟 = 1 Ом хотят подключить нагрузку с сопротивлением 𝑅 (в Ом). Напряжение (в В) на этой нагрузке вычисляется по формуле 𝑈 = 𝜀𝑅 𝑅+𝑟 . При каком значении сопротивления нагрузки напряжение на ней будет равно 170 В? Ответ дайте в омах.

10. Первая труба пропускает на 1 литр воды в минуту меньше, чем вторая. Сколько литров воды в минуту пропускает первая труба, если резервуар объемом 110 литров она заполняет на 2 минуты дольше, чем вторая труба заполняет резервуар объемом 99 литров?

11. На рисунке изображён график функции вида 𝑓(𝑥) = 𝑘𝑥 + 𝑏. Найдите значение 𝑓(7).

12. Найдите точку минимума функции 𝑦 = 9𝑥 − 9 ∙ ln(𝑥 + 3) + 4.

13. а) Решите уравнение 4 sin 𝑥 cos2𝑥 − 2√3 sin 2𝑥 + 3 sin 𝑥 = 0. б) Укажите корни этого уравнения, принадлежащие отрезку.

14. В правильной треугольной пирамиде 𝑆𝐴𝐵𝐶 сторона основания 𝐴𝐵 равна 16, высота 𝑆𝐻 равна 10. Точка 𝐾 − середина бокового ребра 𝑆𝐴. Плоскость, параллельная плоскости 𝐴𝐵𝐶, проходит через точку 𝐾 и пересекает рёбра 𝑆𝐵 и 𝑆𝐶 в точках 𝑄 и 𝑃 соответственно. а) Докажите, что площадь четырёхугольника 𝐵𝐶𝑃𝑄 составляет 3 4 площади треугольника 𝑆𝐵𝐶. б) Найдите объём пирамиды 𝐾𝐵𝐶𝑃𝑄.

15. Решите неравенство (4 𝑥 − 5 ∙ 2 𝑥 ) 2 − 20(4 𝑥 − 5 ∙ 2 𝑥 ) − 96 ≤ 0.

16. В июле 2025 года планируется взять кредит в банке на 600 тыс. рублей. Условия его возврата таковы: – в январе 2026, 2027 и 2028 годов долг возрастает на 𝑟% по сравнению с концом предыдущего года; – в январе 2029, 2030 и 2031 годов долг возрастает на 15% по сравнению с концом предыдущего года; – с февраля по июнь необходимо выплатить часть долга; – в июле каждого года долг должен быть на одну и ту же величину меньше долга на июль предыдущего года; – к июлю 2031 года долг должен быть полностью погашен. Чему равно 𝑟, если общая сумма выплат составит 930 тыс. рублей?

17. В окружность вписана трапеция 𝐴𝐵𝐶𝐷, 𝐴𝐷 − большее основание, проведена высота 𝐵𝐻, вторично пересекающая окружность в точке 𝐾. а) Докажите, что 𝐴𝐶 перпендикулярна 𝐴𝐾. б) Найдите 𝐴𝐷, если радиус описанной окружности равен 12, ∠𝐵𝐴𝐶 = 30°, 𝐶𝐾 пересекает основание 𝐴𝐷 в точке 𝑁. Площадь четырёхугольника 𝐵𝐻𝑁𝐶 в 8 раз больше, чем площадь треугольника 𝐾𝐻𝑁.

19. На доске написаны три различных натуральных числа. Второе число равно сумме цифр первого, а третье равно сумме цифр второго. а) Может ли сумма этих чисел быть равна 2022? б) Может ли сумма этих чисел быть равна 2021? в) В тройке чисел первое число трёхзначное, а третье равно 2. Сколько существует таких троек?

Прогноз заданий ЕГЭ 2024 профиль математика 11 класс

Прогноз заданий ЕГЭ 2024 профиль математика 11 класс с ответами

ПОДЕЛИТЬСЯ МАТЕРИАЛОМ