Тренировочные варианты ЕГЭ 2024 задания и ответы

12 мая 4 варианта формата ЕГЭ 2024 профиль математика 11 класс задания с ответами

Автор

Тренировочные варианты ЕГЭ 2024 по математике 11 класс профильный уровень задания из открытого банка заданий ФИПИ и экзаменов прошлых лет с ответами и решением для подготовки к реальному экзамену, который пройдёт 31 мая 2024 года. Работа состоит из двух частей, включающих в себя 19 заданий. Часть 1 содержит 12 заданий с кратким ответом базового и повышенного уровней сложности. Часть 2 содержит 7 заданий с развёрнутым ответом повышенного и высокого уровней сложности.

243 вариант с ответами

244 вариант с ответами

245 вариант с ответами

246 вариант с ответами

Задания и ответы с 243 варианта

variant-243-ege2024-profil-mat-11klass-otveti

Задание 1.

Найдите сторону правильного шестиугольника, описанного около окружности, радиус которой равен корень из 3.

Ответ:  2

Задание 3.

Шар вписан в цилиндр. Площадь поверхности шара равна 111. Найдите площадь полной поверхности цилиндра.

Ответ:  166,5

Задание 4.

Ковбой Джон попадает в муху на стене с вероятностью 0,9, если стреляет из пристрелянного револьвера. Если Джон стреляет из не пристрелянного револьвера, то он попадает в муху с вероятностью 0,2. На столе лежит 10 револьверов, из них только 4 пристрелянные. Ковбой Джон видит на стене муху, наудачу хватает первый попавшийся револьвер и стреляет в муху. Найдите вероятность того, что Джон промахнётся.

Ответ:  0,52

Задание 5.

Телефон передаёт SMS-сообщение. В случае неудачи телефон делает следующую попытку. Вероятность того, что сообщение удастся передать без ошибок в каждой отдельной попытке, равна 0,2. Найдите вероятность того, что для передачи сообщения потребуется не больше двух попыток.

Ответ:  0,36

Задание 10.

Первая труба пропускает на 5 литров воды в минуту меньше, чем вторая. Сколько литров воды в минуту пропускает вторая труба, если резервуар объемом 375 литров она заполняет на 10 минут быстрее, чем первая труба заполняет резервуар объемом 500 литров?

Ответ:  25

Задание 14.

В правильной четырёхугольной пирамиде SABCD точка М – середина бокового ребра SC, точка N лежит на стороне основания BC. Плоскость α проходит через точки M и N параллельно боковому ребру SA. а) Плоскость α пересекает ребро SD в точке L. Докажите, что BN : NC = DL : LS. б) Пусть BN : NC = 1 : 2. Найдите отношение объёмов многогранников, на которые плоскость α разбивает пирамиду.

Ответ:  5:13

Задание 16. В банке A начисляют на вклад 40% годовых, а в банке Б 60% годовых. Иван Петрович положил часть денег в банк А, а оставшуюся сумму в банк Б. Через два года сумма положенная в банки увеличилась на 150% . Какую часть денег он положил в банк А?

Ответ: 1:10

Задания и ответы с 244 варианта

variant-244-ege2024-profil-mat-11klass-otveti

1. Четырехугольник ABCD вписан в окружность. Угол ABC равен 105°, угол CAD равен 35°. Найдите угол ABD. Ответ дайте в градусах.

Ответ: 70

3. Найдите объем многогранника, вершинами которого являются точки A, B, D, E, A1, B1, D1, E1 правильной шестиугольной призмы ABCDEFA1B1C1D1E1F1, площадь основания которой равна 6, а боковое ребро равно 2.

Ответ: 8

4. Фабрика выпускает сумки. В среднем на 92 качественных сумки приходится 8 сумок, имеющих скрытые дефекты. Найдите вероятность того, что выбранная в магазине сумка окажется с дефектами.

Ответ: 0,08

5. Помещение освещается фонарём с тремя лампами. Вероятность перегорания одной лампы в течение года равна 0,2. Найдите вероятность того, что в течение года хотя бы одна лампа не перегорит.

Ответ: 0,992

9. После дождя уровень воды в колодце может повыситься. Мальчик измеряет время t падения небольших камешков в колодец и рассчитывает расстояние до воды по формуле, где h — расстояние в метрах, t — время падения в секундах. До дождя время падения камешков составляло 0,6 с. На сколько должен подняться уровень воды после дождя, чтобы измеряемое время изменилось на 0,2 с? Ответ выразите в метрах.

Ответ: 1

10. От пристани А к пристани В отправился с постоянной скоростью первый теплоход, а через 1 час после этого следом за ним со скоростью на 1 км/ч большей отправился второй. Расстояние между пристанями равно 420 км. Найдите скорость первого теплохода, если в пункт В оба теплохода прибыли одновременно. Ответ дайте в км/ч.

Ответ: 20

Задания и ответы с 245 варианта

variant-245-ege2024-profil-mat-11klass-otveti

1. Основания трапеции равны 3 и 2. Найдите отрезок, соединяющий середины диагоналей трапеции.

Ответ: 0,5

3. Диагональ прямоугольного параллелепипеда равна 8 и образует углы 30o , 30o и 45o с плоскостями граней параллелепипеда. Найдите объем параллелепипеда.

Ответ: 4

4. Какова вероятность того, что последние три цифры номера случайно выбранного паспорта различны?

Ответ: 0,72

5. Автоматическая линия изготавливает батарейки. Вероятность того, что готовая батарейка неисправна, равна 0,04. Перед упаковкой каждая батарейка проходит систему контроля. Вероятность того, что система забракует неисправную батарейку, равна 0,97. Вероятность того, что система по ошибке забракует исправную батарейку, равна 0,03. Найдите вероятность того, что случайно выбранная изготовленная батарейка будет забракована системой контроля.

Ответ: 0,0676

10. Смешали 4 литра 15-процентного водного раствора некоторого вещества с 6 литрами 25-процентного водного раствора этого же вещества. Сколько процентов составляет концентрация получившегося раствора?

Ответ: 21

16. В июле планируется взять кредит в банке на сумму 6 млн рублей на срок 15 лет. Условия его возврата таковы: • каждый январь долг возрастает на r% по сравнению с концом предыдущего года; • с февраля по июнь каждого года необходимо выплатить часть долга; • в июле каждого года долг должен быть на одну и ту же сумму меньше долга на июль предыдущего года. Найдите r, если известно, что наибольший годовой платёж по кредиту составит не более 1,9 млн рублей, а наименьший—не менее 0,5 млн рублей.

Ответ: 25

19. У Пети есть монеты номиналом 1, 2, 5 и 10 рублей. Каждого вида монет у него по 100 штук. Цена пирожного в рублях выражается целым числом. Петя хочет купить пирожное без сдачи, но до покупки не знает сколько оно стоит. а)  Может ли Петя выбрать дома 16 монет так, чтобы купить пирожное стоимостью не более 100 рублей? б)  Может ли Петя выбрать дома 5 монет так, чтобы купить пирожное стоимостью не более 25 рублей? в)  Какое наименьшее количество монет нужно взять Пете, если известно, что пирожное стоит не более 100 рублей?

Ответ: а-да, б-нет, в-13

Задания и ответы с 246 варианта

variant-246-ege2024-profil-mat-11klass-otveti

1. Около окружности описана трапеция, периметр которой равен 40. Найдите ее среднюю линию.

Ответ: 10

3. Через среднюю линию основания треугольной призмы, площадь боковой поверхности которой равна 24, проведена плоскость, параллельная боковому ребру. Найдите площадь боковой поверхности отсеченной треугольной призмы.

Ответ: 12

4. При производстве в среднем на каждые 2982 исправных насоса приходится 18 неисправных. Найдите вероятность того, что случайно выбранный насос окажется неисправным.

Ответ: 0,006

5. На фабрике керамической посуды 30% произведённых тарелок имеют дефект. При контроле качества продукции выявляется 70% дефектных тарелок. Остальные тарелки поступают в продажу. Найдите вероятность того, что случайно выбранная при покупке тарелка не имеет дефектов. Ответ округлите до тысячных.

Ответ: 0,886

10. Пристани A и B расположены на озере, расстояние между ними 390 км. Баржа отправилась с постоянной скоростью из A в B. На следующий день после прибытия она отправилась обратно со скоростью на 3 км/ч больше прежней, сделав по пути остановку на 9 часов. В результате она затратила на обратный путь столько же времени, сколько на путь из A в B. Найдите скорость баржи на пути из A в B. Ответ дайте в км/ч.

Ответ: 10

16. В июле 2026 года планируется взять кредит на 5 лет в размере 630 тыс. рублей. Условия его возврата таковы: — каждый январь долг возрастает на r% по сравнению с концом предыдущего года; — с февраля по июнь каждого года необходимо выплатить одним платежом часть долга; — в июле 2027, 2028 и 2029 годов долг остаётся равным 630 тыс. рублей; — выплаты в 2030 и 2031 годах равны; — к июлю 2031 года долг будет выплачен полностью. Найдите r, если известно, что долг будет выплачен полностью и общий размер выплат составит 915 тыс. рублей.

Ответ: 10

Другие тренировочные варианты ЕГЭ по математике 2024

4 мая Пробник ЕГЭ 2024 профиль по математике 11 класс 3 варианта с ответами ФИПИ

ПОДЕЛИТЬСЯ МАТЕРИАЛОМ