Новый октябрьский тренировочный вариант (тренировочная работа) №37812195 решу ОГЭ 2022 года по математике 9 класс с ответами и решением для подготовки к экзамену, вариант составлен по новой демоверсии ФИПИ.
Решу ОГЭ 2022 по математике 9 класс тренировочный вариант №37812195:
Ответы и решения:
Каждый водитель в Российской Федерации должен быть застрахован по программе обязательного страхования гражданской ответственности (ОСАГО). Стоимость полиса получается умножением базового тарифа на несколько коэффициентов. Коэффициенты зависят от водительского стажа, мощности автомобиля, количества предыдущих страховых выплат и других факторов. Коэффициент бонус-малус (КБМ) зависит от класса водителя.
Это коэффициент, понижающий или повышающий стоимость полиса в зависимости от количества ДТП в предыдущий год. Сначала водителю присваивается класс 3. Срок действия полиса, как правило, один год. Каждый последующий год класс водителя рассчитывается в зависимости от числа страховых выплат в течение истекшего года, в соответствии со следующей таблицей.
Задание 1 № 369819 Игорь страховал свою гражданскую ответственность три года. В течение первого года была сделана одна страховая выплата, после этого выплат не было. Какой класс будет присвоен Игорю на начало четвёртого года страхования?
Ответ: 3
Задание 2 № 369820 Чему равен КБМ на начало четвёртого года страхования?
Ответ: 1
Задание 3 № 369821 Коэффициент возраста и водительского стажа (КВС) также влияет на стоимость полиса (см. таблицу). Когда Игорь получил водительские права и впервые оформил полис, ему было 22 года. Чему равен КВС на начало 4-го года страхования?
Ответ: 1,04
Задание 4 № 369822 В начале третьего года страхования Игорь заплатил за полис 18585руб. Во сколько рублей обойдётся Игорю полис на четвёртый год, если значения других коэффициентов (кроме КБМ и КВС) не изменятся?
Ответ: 7800
Задание 5 № 369823 Игорь въехал на участок дороги протяжённостью 2,6 км с камерами, отслеживающими среднюю скорость движения. Ограничение скорости на дороге— 100 км/ч. В начале и в конце участка установлены камеры, фиксирующие номер автомобиля и время проезда. По этим данным компьютер вычисляет среднюю скорость на участке. Игорь въехал на участок в 11:10:33, а покинул его в 11:11:51. Нарушил ли Игорь скоростной режим? Если да, на сколько км/ч средняя скорость на данном участке была выше разрешённой?
Ответ: 20
Задание 10 № 311512 В группе из 20 российских туристов несколько человек владеют иностранными языками. Из них пятеро говорят только по-английски, трое только по-французски, двое по-французски и по английски. Какова вероятность того, что случайно выбранный турист говорит по-французски?
Ответ: 0,25
Задание 11 № 339104 На рисунке изображены графики функций вида y = kx + b. Установите соответствие между знаками коэффициентов k и b и графиками функций.
Ответ: 341
Задание 14 № 394312 В соревновании по стрельбе за каждый промах в серии из 25 выстрелов стрелок получал штрафные очки: за первый промах— одно штрафное очко, за каждый последующий— на 0,5 очка больше, чем за предыдущий. Сколько раз попал в цель стрелок, получивший 7 штрафных очков?
Ответ: 21
Задание 16 № 311510 В угол величиной 70° вписана окружность, которая касается его сторон в точках A и B. На одной из дуг этой окружности выбрали точку C так, как показано на рисунке. Найдите величину угла ACB.
Ответ: 55
Задание 19 № 316286 Укажите номера верных утверждений. 1) Если угол равен 47°, то смежный с ним равен 153°. 2) Если две прямые перпендикулярны третьей прямой, то эти две прямые параллельны. 3) Через любую точку проходит ровно одна прямая.
Ответ: 2
Задание 21 № 338712 Три бригады изготовили вместе 266 деталей. Известно, что вторая бригада изготовила деталей в 4 раза больше, чем первая и на 5 деталей меньше, чем третья. На сколько деталей больше изготовила третья бригада, чем первая.
Ответ: 92
Задание 23 № 311240 Окружность проходит через вершины А и С треугольника АВС и пересекает его стороны АВ и ВС в точках К и Е соответственно. Отрезки АЕ и СК перпендикулярны. Найдите ∠КСВ, если ∠АВС = 20°.
Ответ: 35
Задание 24 № 340341 Высоты AA1 и BB1 остроугольного треугольника ABC пересекаются в точке E. Докажите, что углы AA1B1 и ABB1 равны.
Задание 25 № 339825 В параллелограмме ABCD проведена диагональ AC. Точка O является центром окружности, вписанной в треугольник ABC. Расстояния от точки O до точки A и прямых AD и AC соответственно равны 5, 4 и 3. Найдите площадь параллелограмма ABCD.
Ответ: 168
Другие тренировочные варианты ОГЭ 2022 по математике 9 класс:
Тренировочные варианты ОГЭ по математике 9 класс задания с ответами