Новый тренировочный вариант №41054175 ЕГЭ 2022 по математике профильный уровень 11 класс для подготовки, данный вариант составлен по новой демоверсии ФИПИ экзамена ЕГЭ 2022 года, к тренировочным заданиям прилагаются решения и правильные ответы.
Решу ЕГЭ 2022 по математике профильный уровень тренировочный вариант №41054175
Ответы и решения для варианта:
Задание 2 № 282856 При производстве в среднем на каждые 2982 исправных насоса приходится 18 неисправных. Найдите вероятность того, что случайно выбранный насос окажется неисправным.
Ответ: 0,006
Задание 5 № 27124 Во сколько раз объем конуса, описанного около правильной четырехугольной пирамиды, больше объема конуса, вписанного в эту пирамиду?
Ответ: 2
Задание 7 № 28003 Небольшой мячик бросают под острым углом к плоской горизонтальной поверхности земли. Максимальная высота полeта мячика, выраженная в метрах, определяется формулой где м/с – начальная скорость мячика, а – ускорение свободного падения (считайте м/с ). При каком наименьшем значении угла (в градусах) мячик пролетит над стеной высотой 4 м на расстоянии 1 м?
Ответ: 30
Задание 8 № 323855 Клиент А. сделал вклад в банке в размере 7700рублей. Проценты по вкладу начисляются раз в год и прибавляются к текущей сумме вклада. Ровно через год на тех же условиях такой же вклад в том же банке сделал клиент Б. Еще ровно через год клиенты А. и Б. закрыли вклады и забрали все накопившиеся деньги. При этом клиент А. получил на 847рублей больше клиента Б. Какой процент годовых начислял банк по этим вкладам?
Ответ: 10
Задание 10 № 320210 Вероятность того, что батарейка бракованная, равна 0,06. Покупатель в магазине выбирает случайную упаковку, в которой две таких батарейки. Найдите вероятность того, что обе батарейки окажутся исправными.
Ответ: 0,8836
Задание 13 № 514245 В правильной четырёхугольной пирамиде SABCD все рёбра равны 5. На рёбрах SA, AB, BC взяты точки P, Q, R соответственно так, что PA = AQ = RC = 2. а) Докажите, что плоскость PQR перпендикулярна ребру SD. б) Найдите расстояние от вершины D до плоскости PQR.
Задание 15 № 511283 В июле планируется взять кредит в банке на некоторую сумму. Условия его возврата таковы: — каждый январь долг возрастает на 31% по сравнению с концом предыдущего года; — с февраля по июнь каждого года необходимо выплатить часть долга, равную 69 690 821 рубль. Сколько рублей было взято в банке, если известно, что он был полностью погашен тремя равными платежами ( то есть за три года)?
Ответ: 124809100 рублей.
Задание 16 № 514449 В остроугольном треугольнике АВС проведены высоты АК и СМ. На них из точек М и К опущены перпендикуляры МЕ и КН соответственно. а) Докажите, что прямые ЕН и АС параллельны; б) Найдите отношение ЕН : АС, если угол АВС равен 30°.
Ответ: 3:4
Задание 18 № 521312 В школах № 1 и № 2 учащиеся писали тест. Из каждой школы тест писали, по крайней мере, 2 учащихся, а суммарно тест писали 9 учащихся. Каждый учащийся, писавший тест, набрал натуральное количество баллов. Оказалось, что в каждой школе средний балл за тест был целым числом. После этого один из учащихся, писавших тест, перешёл из школы № 1 в школу № 2, а средние баллы за тест были пересчитаны в обеих школах. а) Мог ли средний балл в школе № 1 уменьшиться в 10 раз? б) Средний балл в школе № 1 уменьшился на 10%, средний балл в школе № 2 также уменьшился на 10%. Мог ли первоначальный средний балл в школе № 2 равняться 7? в) Средний балл в школе № 1 уменьшился на 10%, средний балл в школе № 2 также уменьшился на 10%. Найдите наименьшее значение первоначального среднего балла в школе № 2.
Ответ: а) да; б) нет; в) 5.
Другие тренировочные варианты ЕГЭ 2022 по математике:
28.09.2021 Математика 11 класс МА2110101-МА2110112 ЕГЭ 2022 работа статград ответы и задания