Новые тренировочные варианты №14 и №15 ЕГЭ 2025 по математике 11 класс профильный уровень от школы Пифагора 100 баллов с ответами и решением для подготовки к реальному экзамену, который пройдёт 27 мая 2025 (во вторник). Каждый вариант соответствует новой демоверсии ФИПИ 2025 года.
Пробник состоит из двух частей, включающих в себя 19 заданий. Часть 1 содержит 12 заданий с кратким ответом базового и повышенного уровней сложности. Часть 2 содержит 7 заданий с развёрнутым ответом повышенного и высокого уровней сложности. На выполнение экзаменационной работы по математике отводится 3 часа 55 минут (235 минут).
14 тренировочный вариант ЕГЭ 2025 математика профиль
Variant_14_EGE_profil_s_otvetami_202515 вариант пробника ЕГЭ 2025 школа Пифагора
Variant_15_EGE_profil_s_otvetami_2025Задания и ответы для 14 варианта
Risovalki_k_variantu_14_20251. В ромбе 𝐴𝐵𝐶𝐷 угол 𝐶𝐷𝐴 равен 78°. Найдите угол 𝐴𝐶𝐵. Ответ дайте в градусах.
Ответ: 51
2. Даны векторы 𝑎⃗ (7; 1) и 𝑏⃗⃗ (−1; −7). Найдите косинус угла между ними.
Ответ: -0,28
3. Прямоугольный параллелепипед описан около цилиндра, радиус основания которого равен 3. Объём параллелепипеда равен 36. Найдите высоту цилиндра.
Ответ: 1
4. Перед началом волейбольного матча капитаны команд тянут честный жребий, чтобы определить, какая из команд начнёт игру с мячом. Команда «Стартер» по очереди играет с командами «Протор», «Ротор» и «Мотор». Найдите вероятность того, что «Стартер» будет начинать только вторую и последнюю игры.
Ответ: 0,125
5. Если шахматист А. играет белыми фигурами, то он выигрывает у шахматиста Б. с вероятностью 0,6. Если А. играет чёрными, то А. выигрывает у Б. с вероятностью 0,45. Шахматисты А. и Б. играют две партии, причём во второй партии меняют цвет фигур. Найдите вероятность того, что А. выиграет оба раза.
Ответ: 0,27
8. На рисунке изображён график 𝑦 = 𝑓 ′ (𝑥) − производной функции 𝑓(𝑥), определённой на интервале (−9; 8). Найдите точку экстремума функции 𝑓(𝑥) на отрезке [−3; 3].
Ответ: -2
9. Для определения эффективной температуры звёзд используют закон Стефана-Больцмана, согласно которому мощность излучения 𝑃 (в ваттах) нагретого тела прямо пропорциональна площади его поверхности и четвёртой степени температуры: 𝑃 = 𝜎𝑆𝑇 4 , где 𝜎 = 5,7 ∙ 10−8 − постоянная, площадь поверхности 𝑆 измеряется в квадратных метрах, а температура 𝑇 − в градусах Кельвина. Известно, что некоторая звезда имеет площадь поверхности 𝑆 = 1 18 ∙ 1021 м 2 , а излучаемая ею мощность 𝑃 равна 4,104 ∙ 1027 Вт. Определите температуру этой звезды. Дайте ответ в градусах Кельвина.
Ответ: 6000
10. Теплоход, скорость которого в неподвижной воде равна 24 км/ч, проходит по течению реки и после стоянки возвращается в исходный пункт. Скорость течения равна 3 км/ч, стоянка длится 2 часа, а в исходный пункт теплоход возвращается через 34 часа после отправления из него. Сколько километров прошёл теплоход за весь рейс?
Ответ: 756
11. На рисунке изображены графики двух линейных функций. Найдите абсциссу точки пересечения графиков.
Ответ: -12
12. Найдите наименьшее значение функции 𝑦 = (3𝑥 2 + 21𝑥 − 21)𝑒 𝑥 на отрезке [−5; 3].
Ответ: -21
13. а) Решите уравнение 2 sin 2𝑥 + 2 sin(−𝑥) − 2 cos(−𝑥) + 1 = 0. б) Укажите корни этого уравнения, принадлежащие отрезку.
16. В июле 2025 года планируется взять кредит в банке на некоторую сумму на 10 лет. Условия его возврата таковы: – каждый январь долг будет возрастать на 20% по сравнению с концом предыдущего года; – с февраля по июнь каждого года необходимо оплатить одним платежом часть долга; – в июле 2026, 2027, 2028, 2029 и 2030 годов долг должен быть на какую-то одну и ту же величину меньше долга на июль предыдущего года; – в июле 2030 года долг должен составить 600 тыс. рублей; – в июле 2031, 2032, 2033, 2034 и 2035 годов долг должен быть на другую одну и ту же величину меньше долга на июль предыдущего года; – к июлю 2035 года долг должен быть выплачен полностью. Найдите начальную сумму кредита, если сумма выплат по кредиту равна 2360 тысяч рублей.
Ответ: 1100 тыс
17. В окружность вписана трапеция 𝐴𝐵𝐶𝐷, 𝐴𝐷 − большее основание, проведена высота 𝐵𝐻, вторично пересекающая окружность в точке 𝐾. а) Докажите, что 𝐴𝐶 перпендикулярна 𝐴𝐾. б) Найдите 𝐴𝐷, если радиус описанной окружности равен 6, ∠𝐵𝐴𝐶 = 30°, 𝐶𝐾 пересекает основание 𝐴𝐷 в точке 𝑁. Площадь четырёхугольника 𝐵𝐻𝑁𝐶 в 35 раз больше, чем площадь треугольника 𝐾𝐻𝑁.
19. Целое число 𝑆 является суммой не менее пяти последовательных членов непостоянной арифметической прогрессии, состоящей из целых чисел. а) Может ли 𝑆 равняться 9? б) Может ли 𝑆 равняться 2? в) Найдите все значения, которые может принимать 𝑆.
Видео решение варианта
Задания и ответы для 15 варианта
Risovalki_k_variantu_15_20251 задание
Угол 𝐴𝐶𝑂 равен 28°. Его сторона 𝐶𝐴 касается окружности с центром в точке 𝑂. Сторона 𝐶𝑂 пересекает окружность в точках 𝐵 и 𝐷 (см. рис.). Найдите градусную меру дуги 𝐴𝐷 окружности, заключённой внутри этого угла. Ответ дайте в градусах.
Ответ: 118
2 задание
Даны векторы 𝑎⃗ (41; 0) и 𝑏⃗⃗ (1; −1). Найдите длину вектора 𝑎⃗ − 20𝑏⃗⃗.
Ответ: 29
3 задание
В основании прямой призмы лежит прямоугольный треугольник с катетами 10 и 9. Боковые рёбра призмы равны 2 𝜋 . Найдите объём цилиндра, описанного около этой призмы.
Ответ: 90,5
4 задание
В фирме такси в наличии 60 легковых автомобилей; 27 из них чёрного цвета с жёлтыми надписями на боках, остальные – жёлтого цвета с чёрными надписями. Найдите вероятность того, что на случайный вызов приедет машина жёлтого цвета с чёрными надписями.
Ответ: 0,55
5 задание
Игральную кость бросили два раза. Известно, что шесть очков не выпало ни разу. Найдите при этом условии вероятность события «сумма очков равна 9».
Ответ: 0,08
6 задание
Найдите корень уравнения (6𝑥 − 13) 2 = (6𝑥 − 11) 2 .
Ответ: 2
8 задание
На рисунке изображён график 𝑦 = 𝐹(𝑥) одной из первообразных некоторой функции 𝑓(𝑥) и отмечены восемь точек на оси абсцисс: 𝑥1 , 𝑥2 , 𝑥3 , 𝑥4 , 𝑥5 , 𝑥6 , 𝑥7 , 𝑥8 . В скольких из этих точек функция 𝑓(𝑥) отрицательна?
Ответ: 3
9 задание
К источнику с ЭДС 𝜀 = 115 В и внутренним сопротивлением 𝑟 = 0,6 Ом, хотят подключить нагрузку с сопротивлением 𝑅 Ом. Напряжение на этой нагрузке, выражаемое в вольтах, даётся формулой 𝑈 = 𝜀𝑅 𝑅+𝑟 . При каком наименьшем значении сопротивления нагрузки напряжение на ней будет не менее 100 В? Ответ выразите в омах.
Ответ: 4
10 задание
Имеется два сосуда. Первый содержит 60 кг, а второй – 20 кг растворов кислоты различной концентрации. Если эти растворы смешать, то получится раствор, содержащий 30% кислоты. Если же смешать равные массы этих растворов, то получится раствор, содержащий 45% кислоты. Сколько процентов кислоты содержится в первом сосуде?
Ответ: 15
11 задание
На рисунке изображён график функции вида 𝑓(𝑥) = 𝑎𝑥 2 + 𝑏𝑥 + 𝑐. Найдите значение 𝑓(−3).
Ответ: 20
14 задание
В основании прямой треугольной призмы 𝐴𝐵𝐶𝐴1𝐵1𝐶1 лежит равнобедренный треугольник 𝐴𝐵𝐶 с основанием 𝐴𝐶. Точка 𝐾 − середина ребра 𝐴1𝐵1 , а точка 𝑀 делит ребро 𝐴𝐶 в отношении 𝐴𝑀: 𝑀𝐶 = 1: 3. а) Докажите, что 𝐾𝑀 перпендикулярно 𝐴𝐶. б) Найдите угол между прямой 𝐾𝑀 и плоскостью 𝐴𝐵𝐵1 , если 𝐴𝐵 = 8, 𝐴𝐶 = 12 и 𝐴𝐴1 = 5.
15 задание
Решите неравенство (log0,2 2 (𝑥 + 2) − log5 (𝑥 2 + 4𝑥 + 4) + 1) ∙ log5 (𝑥 + 1) ≤ 0.
16 задание
В июле 2025 года планируется взять кредит в банке на 8 лет. Условия его возврата таковы: – в январе 2026, 2027, 2028 и 2029 годов долг возрастает на 15% по сравнению с концом предыдущего года; – в январе 2030, 2031, 2032 и 2033 годов долг возрастает на 11% по сравнению с концом предыдущего года; – с февраля по июнь каждого года необходимо выплатить часть долга; – в июле каждого года долг должен быть на одну и ту же величину меньше долга на июль предыдущего года; – к июлю 2033 года кредит должен быть полностью погашен. Какую сумму планируется взять в кредит, если общая сумма выплат после полного его погашения составит 650 тысяч рублей?
Ответ: 400 тыс.
17 задание
В трапеции 𝐴𝐵𝐶𝐷 основание 𝐴𝐷 в два раза больше основания 𝐵𝐶. Внутри трапеции взяли точку 𝑀 так, что углы 𝐴𝐵𝑀 и 𝐷𝐶𝑀 прямые. а) Докажите, что 𝐴𝑀 = 𝐷𝑀. б) Найдите угол 𝐵𝐴𝐷, если угол 𝐴𝐷𝐶 равен 70°, а расстояние от точки 𝑀 до прямой 𝐴𝐷 равно стороне 𝐵𝐶.
Ответ: 65
18 задание
Найдите все значения 𝑎, при каждом из которых уравнение (4 cos 𝑥 − 3 − 𝑎) ∙ cos 𝑥 − 2,5 cos 2𝑥 + 1,5 = 0 имеет хотя бы один корень.
19 задание
Есть три коробки: в первой коробке 64 камня, во второй – 77, в третьей пусто. За один ход разрешается взять по камню из двух коробок и положить в оставшуюся. а) Могло ли в первой коробке оказаться 64 камня, во второй – 59, в третьей – 18? б) Могло ли в третьей коробке оказаться 141 камень? в) Какое наибольшее число камней могло оказаться в третьей коробке?
Видео решение варианта
Решите другие варианты ЕГЭ 2025
Варианты МА2410201-МА2410212 статград математика 11 класс ЕГЭ 2025