ответы варианты задания

Варианты ИН2110401 ИН2110402 ЕГЭ 2022 информатика 11 класс статград с ответами

Автор

ПОДЕЛИТЬСЯ

Тренировочная работа №4 статград по информатике 11 класс составлена по образцу экзамена ЕГЭ 2022 года , 2 тренировочных варианта ИН2110401 и ИН2110402 с ответами на все задания и видео разбором вариантов, официальная дата проведения работы статград 30 марта 2022 года.

Скачать варианты ИН2110401-ИН2110402

Скачать файлы

Скачать ответы на все задания

Работа статград ЕГЭ по информатике и ИКТ состоит из 27 заданий с кратким ответом, выполняемых с помощью компьютера.

Тренировочная работа №4 статград по информатике 11 класс ЕГЭ 2022:

Задания и ответы с варианта ИН2110401:

1)На рисунке схема дорог изображена в виде графа, в таблице звёздочкой отмечено наличие дороги между двумя населёнными пунктами. Так как таблицу и схему рисовали независимо друг от друга, нумерация пунктов в таблице никак не связана с буквенными обозначениями на графе. Кроме того, при заполнении таблицы одну дорогу случайно пропустили. Определите два населённых пункта, дорога между которыми есть на графе, но не отмечена в таблице. В ответе запишите буквенные обозначения этих пунктов в алфавитном порядке.

Правильный ответ: БВ

2)Логическая функция F задаётся выражением: ((x → y) ≡ (z ∧ w)) ∧ (x → z) Дан частично заполненный фрагмент, содержащий неповторяющиеся строки таблицы истинности функции F. Определите, какому столбцу таблицы истинности соответствует каждая из переменных w, x, y, z. В ответе напишите буквы w, x, y, z в том порядке, в котором идут соответствующие им столбцы (сначала буква, соответствующая первому столбцу; затем буква, соответствующая второму столбцу, и т. д.). Буквы в ответе пишите подряд, никаких разделителей между буквами ставить не нужно. Тогда первому столбцу соответствует переменная y, а второму столбцу – переменная x. В ответе нужно написать: yx.

Правильный ответ: yzwx

3)В файле приведён фрагмент базы данных «Продукты», содержащей информацию о поставках товаров и их продаже. База данных состоит из трёх таблиц. Таблица «Движение товаров» содержит записи о поставках товаров в магазины города в первой декаде июня 2021 г. и о продаже товаров в этот же период. Таблица «Товар» содержит данные о товарах. Таблица «Магазин» содержит адреса магазинов. На рисунке приведена схема базы данных, содержащая все поля каждой таблицы и связи между ними. Используя информацию из приведённой базы данных, определите, сколько килограммов всех видов продуктов, полученных с мясокомбината, было продано за указанный период в магазинах Заречного района.

Правильный ответ: 1039

4)Все заглавные буквы русского алфавита закодированы неравномерным двоичным кодом, в котором никакое кодовое слово не является началом другого кодового слова. Это условие обеспечивает возможность однозначной расшифровки закодированных сообщений. Известны кодовые слова некоторых букв: А – 000, Б – 0010, В – 10, Т – 1101. Известно также, что код слова РОБОТ содержит 17 двоичных знаков. Укажите самый короткий возможный код буквы Р. Если таких кодов несколько, укажите тот из них, который имеет наименьшее числовое значение.

Правильный ответ: 010

5)Алгоритм получает на вход натуральное число N ≥ 10 и строит по нему новое число R следующим образом: 1. Все пары соседних цифр в десятичной записи N рассматриваются как двузначные числа (возможно, с ведущим нулём). 2. Из списка полученных на предыдущем шаге двузначных чисел выделяются наименьшее и наибольшее. 3. Результатом работы алгоритма становится сумма найденных на предыдущем шаге двух чисел. Пример. Дано число N = 2022. Алгоритм работает следующим образом: 1. В десятичной записи выделяем двузначные числа: 20, 02, 22. 2. Наименьшее из найденных чисел 02, наибольшее 22. 3. 02 + 22 = 24. Результат работы алгоритма R = 24. При каком наименьшем N в результате работы алгоритма получится R = 137?

Правильный ответ: 398

6)Определите, сколько существует различных значений переменной s, при вводе которых данная программа выведет число 7. Для Вашего удобства программа представлена на четырёх языках программирования. s = int(input()) s = s // 7 n = 1 while s < 255: s = s + n n = n + 1 print(n)

Правильный ответ: 42

7)В информационной системе хранятся сведения о некотором объекте и его фотография, сделанная в режиме HighColor (216 цветов). Суммарно (сведения и фотография) информация об объекте занимает 7 Мбайт. Фотографию объекта заменили на более качественную, сделанную в режиме TrueColor (224 цветов), при этом разрешение и коэффициент сжатия изображения не изменились. После замены информация об объекте стала занимать 9 Мбайт. Сколько Мбайтов занимают сведения об объекте без учёта фотографии?

Правильный ответ: 3

8)Настя составляет коды из букв слова НАСТЯ. Код должен состоять из 7 букв, буква Н должна встречаться в нём ровно два раза, буква А – как минимум один раз. Сколько различных кодов может составить Настя?

Правильный ответ: 16401

9)В каждой строке электронной таблицы записаны четыре натуральных числа. Определите, сколько в таблице таких четвёрок, из которых можно выбрать три числа с нечётной суммой.

Правильный ответ: 4691

10)На каком расстоянии (в вёрстах) от Оренбурга находилась Белогорская крепость, в которой служил герой повести А.С. Пушкина «Капитанская дочка» Пётр Гринёв? В ответе укажите целое число – количество вёрст.

Правильный ответ: 40

11)Система мониторинга формирует и отправляет специальные сообщения, в которые могут входить только следующие символы: латинские буквы (26 заглавных и 26 строчных), цифры от 0 до 9, пробел. Количество символов в сообщении может быть любым. При передаче сообщения используется равномерное посимвольное кодирование: каждый символ кодируется одинаковым минимально возможным числом битов. Сообщение в целом кодируется минимально возможным целым числом байтов. Кроме того, к каждому сообщению добавляется заголовок, содержащий целое число байтов, одинаковое для всех сообщений. Система отправила 7 сообщений: два сообщения по 30 символов каждое, два сообщения по 50 символов и три сообщения по 70 символов. При этом всего было передано 400 байт. Сколько байтов содержит заголовок сообщения? В ответе запишите только целое число – количество байтов.

Правильный ответ: 17

12)Исполнитель Редактор получает на вход строку цифр и преобразует её. Редактор может выполнять две команды, в обеих командах v и w обозначают цепочки цифр. А) заменить (v, w). Эта команда заменяет в строке первое слева вхождение цепочки v на цепочку w. Например, выполнение команды заменить (111, 27) преобразует строку 05111150 в строку 0527150. Если в строке нет вхождений цепочки v, то выполнение команды заменить (v, w) не меняет эту строку. Б) нашлось (v). Эта команда проверяет, встречается ли цепочка v в строке исполнителя Редактор. Если она встречается, то команда возвращает логическое значение «истина», в противном случае возвращает значение «ложь». Строка исполнителя при этом не изменяется. Известно, что исходная строка начиналась с нуля и заканчивалась нулём, а между ними содержала только единицы и двойки. После выполнения данной программы получилась строка, содержащая 27 единиц, 9 двоек и 4 тройки. Сколько двоек было в исходной строке?

13)На рисунке представлена схема дорог, связывающих пункты А, Б, В, Г, Д, Е, Ж, И, К, Л, М, Н, П, Р, С. По каждой дороге можно передвигаться только в направлении, указанном стрелкой. Сколько существует различных путей из пункта А в пункт С, проходящих ровно через один из пунктов Е и Ж?

14)Значение выражения 7 ∙ 7296 + 6 ∙ 819 + 314 – 90 записали в системе счисления с основанием 9 без незначащих нулей. Сколько чётных цифр встречается в этой записи?

15)На числовой прямой даны два отрезка: P = [6; 45] и Q = [18; 52]. Укажите наименьшую возможную длину такого отрезка A, для которого формула ((x ∊ Q) ≡ (x ∊ P)) ∨ (((x ∊ P) ∧ ¬(x ∊ Q)) → (x ∊ A)) тождественно истинна (т. е. принимает значение 1 при любом значении переменной х).

16)Обозначим частное от деления целочисленного натурального числа a на натуральное число b как a div b, а остаток как a mod b. Например, 13 div 3 = 4, 13 mod 3 = 1. Алгоритм вычисления значения функции F(a, b), где a и b – целые неотрицательные числа, задан следующими соотношениями: F(0, b) = b; F(a, b) = F(a div 10, 10b + (a mod 10)), если a > 0. Укажите наименьшее значение a, для которого F(a, 0) = 1248163264.

17)Файл содержит последовательность неотрицательных целых чисел, не превышающих 10 000. Назовём парой два идущих подряд элемента последовательности. Определите количество пар, в которых ровно один из двух элементов делится на 3, а модуль их разности меньше наименьшего нечётного элемента последовательности. В ответе запишите два числа: сначала количество найденных пар, а затем – максимальный модуль разности элементов таких пар.

18)Робот стоит в левом верхнем углу прямоугольного поля, в каждой клетке которого записано целое число. За один ход робот может переместиться на одну клетку вправо или на одну клетку вниз. Выходить за пределы поля робот не может. Числа показывают изменение запаса энергии робота при прохождении соответствующей клетки. Если число отрицательно, запас энергии уменьшается (робот расходует энергию на прохождение клетки), если положительно – увеличивается (робот подзаряжается). Если запас энергии становится нулевым или отрицательным, робот не может продолжать движение. Определите максимальный запас энергии, который может быть у робота после перехода в правую нижнюю клетку поля, и количество недоступных клеток, в которые робот не сможет попасть из-за нехватки энергии. В ответе запишите два числа: сначала максимально возможное значение, затем – количество недоступных клеток.

19)Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в кучу один камень, добавить два камня или увеличить количество камней в куче в два раза. При этом удвоение разрешено выполнять, только если в куче в данный момент нечётное число камней. Например, если в начале игры в куче 3 камня, Петя может первым ходом получить кучу из 4, 5 или 6 камней. Если Петя получил кучу из 4 камней (добавил один камень), то следующим ходом Ваня может получить 5 или 6 камней. Получить 8 камней Ваня не может, так как нельзя удваивать кучу с чётным числом камней.

Чтобы делать ходы, у каждого игрока есть неограниченное количество камней. Игра завершается, когда количество камней в куче становится не менее 22. Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу, в которой будет 22 или больше камней. В начальный момент в куче было S камней, 1 ≤ S ≤ 21. Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Укажите такое значение S, при котором у Вани есть выигрышная стратегия, позволяющая ему выиграть вторым ходом при любой игре Пети, но у Вани нет стратегии, которая позволяла бы ему гарантированно выиграть первым ходом.

20)Для игры, описанной в задании 19, укажите два значения S, при которых Петя не может выиграть за один ход, но у Пети есть выигрышная стратегия, позволяющая ему выиграть вторым ходом. В ответе запишите найденные значения в порядке возрастания: сначала меньшее, затем большее.

21)Для игры, описанной в задании 19, найдите наименьшее значение S, при котором у Пети есть выигрышная стратегия, позволяющая ему выиграть третьим ходом при любой игре Вани, но у Пети нет стратегии, которая позволяла бы ему гарантированно выиграть первым или вторым ходом.

22)Ниже на четырёх языках программирования записана программа, которая вводит натуральное число x, выполняет преобразования, а затем выводит два числа. Известно, что при вводе некоторого x программа первым вывела число 6300. Укажите наибольшее возможное значение числа, выведенного вторым.

23)Исполнитель преобразует число на экране. У исполнителя есть две команды, которым присвоены номера: 1. Прибавить 1 2. Умножить на 2 Первая команда увеличивает число на экране на 1, вторая умножает его на 2. Программа для исполнителя – это последовательность команд. Сколько существует программ, которые преобразуют исходное число 1 в число 11 и при этом содержат не более двух команд умножения?

24)Текстовый файл содержит только заглавные буквы латинского алфавита (ABC…Z). Определите количество групп из идущих подряд не менее 12 символов, которые начинаются и заканчиваются буквой A, не содержат других букв A (кроме первой и последней) и содержат не меньше двух букв B.

25)Пусть M(k) = 7 000 000 + k, где k – натуральное число. Найдите пять наименьших значений k, при которых M(k) нельзя представить в виде произведения трёх различных натуральных чисел, не равных 1. В ответе запишите найденные значения k в порядке возрастания.

26)При проведении эксперимента заряженные частицы попадают на чувствительный экран, представляющий из себя матрицу размером 10 000 на 10 000 точек. При попадании каждой частицы на экран в протоколе фиксируются координаты попадания: номер ряда (целое число от 1 до 10 000) и номер позиции в ряду (целое число от 1 до 10 000). Точка экрана, в которую попала хотя бы одна частица, считается светлой, точка, в которую ни одна частица не попала, – тёмной. Вам необходимо по заданному протоколу определить номер ряда с наибольшим количеством светлых точек в чётных позициях. Если таких рядов несколько, укажите минимально возможный номер.

27)Дана последовательность натуральных чисел. Рассматриваются все её непрерывные подпоследовательности, состоящие более чем из ста элементов. Необходимо определить количество таких подпоследовательностей, сумма элементов которых кратна 999.

Задания и ответы с варианта ИН2110402:

1)На рисунке схема дорог изображена в виде графа, в таблице звёздочкой отмечено наличие дороги между двумя населёнными пунктами. Так как таблицу и схему рисовали независимо друг от друга, нумерация пунктов в таблице никак не связана с буквенными обозначениями на графе. Кроме того, при заполнении таблицы одну дорогу случайно пропустили. Определите два населённых пункта, дорога между которыми есть на графе, но не отмечена в таблице. В ответе запишите буквенные обозначения этих пунктов в алфавитном порядке.

Правильный ответ: ВИ

2)Логическая функция F задаётся выражением: ((y ∧ z) ≡ (w → x)) ∧ (w → y) Дан частично заполненный фрагмент, содержащий неповторяющиеся строки таблицы истинности функции F. Определите, какому столбцу таблицы истинности соответствует каждая из переменных w, x, y, z. В ответе напишите буквы w, x, y, z в том порядке, в котором идут соответствующие им столбцы (сначала буква, соответствующая первому столбцу; затем буква, соответствующая второму столбцу, и т. д.). Буквы в ответе пишите подряд, никаких разделителей между буквами ставить не нужно.

Правильный ответ: wyxz

3)В файле приведён фрагмент базы данных «Продукты», содержащей информацию о поставках товаров и их продаже. База данных состоит из трёх таблиц. Таблица «Движение товаров» содержит записи о поставках товаров в магазины города в первой декаде июня 2021 г. и о продаже товаров в этот же период. Таблица «Товар» содержит данные о товарах. Таблица «Магазин» содержит адреса магазинов. На рисунке приведена схема базы данных, содержащая все поля каждой таблицы и связи между ними. Используя информацию из приведённой базы данных, определите, сколько килограммов всех видов продуктов поступило за указанный период в магазины Октябрьского района от поставщика «Продбаза».

Правильный ответ: 10205

4)Все заглавные буквы русского алфавита закодированы неравномерным двоичным кодом, в котором никакое кодовое слово не является началом другого кодового слова. Это условие обеспечивает возможность однозначной расшифровки закодированных сообщений. Известны кодовые слова некоторых букв: А – 00, Б – 010, В – 110, С – 1111. Известно также, что код слова СЕВЕР содержит 16 двоичных знаков. Укажите самый короткий возможный код буквы Р. Если таких кодов несколько, укажите тот из них, который имеет наибольшее числовое значение.

Правильный ответ: 101

5)Алгоритм получает на вход натуральное число N ≥ 10 и строит по нему новое число R следующим образом: 1. Все пары соседних цифр в десятичной записи N рассматриваются как двузначные числа (возможно, с ведущим нулём). 2. Из списка полученных на предыдущем шаге двузначных чисел выделяются наименьшее и наибольшее. 3. Результатом работы алгоритма становится сумма найденных на предыдущем шаге двух чисел. Пример. Дано число N = 2022. Алгоритм работает следующим образом: 1. В десятичной записи выделяем двузначные числа: 20, 02, 22. 2. Наименьшее из найденных чисел 02, наибольшее 22. 3. 02 + 22 = 24. Результат работы алгоритма R = 24. При каком наименьшем N в результате работы алгоритма получится R = 153?

Правильный ответ: 594

6)Определите, сколько существует различных значений переменной s, при вводе которых данная программа выведет число 8. Для Вашего удобства программа представлена на четырёх языках программирования. var s, n: integer; begin readln(s); s := s div 7; n := 1; while s < 255 do begin s := s + n; n := n + 1 end; writeln(n) end.

Правильный ответ: 49

7)В информационной системе хранятся сведения о некотором объекте и его чёрно-белая фотография, содержащая 256 оттенков цвета. Суммарно (сведения и фотография) информация об объекте занимает 7 Мбайт. Фотографию объекта заменили на цветную, сделанную в режиме TrueColor (224 цветов), при этом разрешение и коэффициент сжатия изображения не изменились. После замены информация об объекте стала занимать 11 Мбайт. Сколько Мбайтов занимают сведения об объекте без учёта фотографии?

Правильный ответ: 3

8)Леонид составляет коды из букв слова ЛЕОНИД. Код должен состоять из 6 букв, буква Л должна встречаться в нём ровно два раза, буква О – как минимум один раз. Сколько различных кодов может составить Леонид?

Правильный ответ: 5535

9)В каждой строке электронной таблицы записаны четыре натуральных числа. Определите, сколько в таблице таких четвёрок, из которых можно выбрать три числа с чётной суммой.

Правильный ответ: 4705

10)Какую сумму (в рублях) проиграл в бильярд герой повести А.С. Пушкина «Капитанская дочка» Пётр Гринёв? В ответе укажите целое число – количество рублей.

Правильный ответ: 100

11)Система мониторинга формирует и отправляет специальные сообщения, в которые могут входить только следующие символы: латинские буквы (26 заглавных и 26 строчных), цифры от 0 до 9, пробел. Количество символов в сообщении может быть любым. При передаче сообщения используется равномерное посимвольное кодирование: каждый символ кодируется одинаковым минимально возможным числом битов. Сообщение в целом кодируется минимально возможным целым числом байтов. Кроме того, к каждому сообщению добавляется заголовок, содержащий целое число байтов, одинаковое для всех сообщений. Система отправила 7 сообщений: три сообщения по 30 символов каждое, два сообщения по 50 символов и два сообщения по 70 символов. При этом всего было передано 440 байт. Сколько байтов содержит заголовок сообщения? В ответе запишите только целое число – количество байтов.

12)Исполнитель Редактор получает на вход строку цифр и преобразует её. Редактор может выполнять две команды, в обеих командах v и w обозначают цепочки цифр. А) заменить (v, w). Эта команда заменяет в строке первое слева вхождение цепочки v на цепочку w. Например, выполнение команды заменить (111, 27) преобразует строку 05111150 в строку 0527150. Если в строке нет вхождений цепочки v, то выполнение команды заменить (v, w) не меняет эту строку. Б) нашлось (v). Эта команда проверяет, встречается ли цепочка v в строке исполнителя Редактор. Если она встречается, то команда возвращает логическое значение «истина», в противном случае возвращает значение «ложь». Строка исполнителя при этом не изменяется.

13)На рисунке представлена схема дорог, связывающих пункты А, Б, В, Г, Д, Е, Ж, И, К, Л, М, Н, П, Р, С. По каждой дороге можно передвигаться только в направлении, указанном стрелкой. Сколько существует различных путей из пункта А в пункт С, проходящих ровно через один из пунктов Ж и М?

14)Значение выражения 5 ∙ 7298 + 7 ∙ 8112 + 316 – 171 записали в системе счисления с основанием 9 без незначащих нулей. Сколько чётных цифр встречается в этой записи?

15)На числовой прямой даны два отрезка: P = [6; 45] и Q = [18; 52]. Укажите наименьшую возможную длину такого отрезка A, для которого формула ((x ∊ Q) ≡ (x ∊ P)) ∨ (¬(x ∊ A) → ((x ∊ P) ∧ ¬(x ∊ Q))) тождественно истинна (т. е. принимает значение 1 при любом значении переменной х).

16)Обозначим частное от деления целочисленного натурального числа a на натуральное число b как a div b, а остаток как a mod b. Например, 13 div 3 = 4, 13 mod 3 = 1. Алгоритм вычисления значения функции F(a, b), где a и b – целые неотрицательные числа, задан следующими соотношениями: F(0, b) = b; F(a, b) = F(a div 10, 10b + (a mod 10)), если a > 0. Укажите наименьшее значение a, для которого F(a, 0) = 1392781243.

17)Файл содержит последовательность неотрицательных целых чисел, не превышающих 10 000. Назовём парой два идущих подряд элемента последовательности. Определите количество пар, в которых ровно один из двух элементов делится на 5, а модуль их разности меньше наименьшего чётного элемента последовательности. В ответе запишите два числа: сначала количество найденных пар, а затем – максимальный модуль разности элементов таких пар.

20)Для игры, описанной в задании 19, укажите два значения S, при которых Петя не может выиграть за один ход, но у Пети есть выигрышная стратегия, позволяющая ему выиграть вторым ходом. В ответе запишите найденные значения в порядке возрастания: сначала меньшее, затем большее.

21)Для игры, описанной в задании 19, найдите наименьшее значение S, при котором у Пети есть выигрышная стратегия, позволяющая ему выиграть третьим ходом при любой игре Вани, но у Пети нет стратегии, которая позволяла бы ему гарантированно выиграть первым или вторым ходом.

Видео разбор варианта статграда по информатике:

Тренировочная работа №3 статград по информатике 11 класс ЕГЭ 2022

Тренировочная работа №2 статград по информатике 11 класс ЕГЭ 2022