

Стереометрия 2023

Задание 1

Дан тетраэдр ABCD. Точки K, L, M и N лежат на ребрах AC, AD, DB и BC соответственно, так, что четырехугольник KLMN квадрат со стороной 2. AK : KC = 2:3.

- а) Докажите, что BM : MD = 2 : 3.
- 6) Найдите расстояние от точки C до плоскости KLMN, если объем тетраэдра равен 25.

⇒ Видеоразбор задачи

Задание 2

Все боковые стороны четырехугольной пирамиды SABCD равны AD стороне основания ABCD. Стороны AB, BC и CD вдвое меньше стороны AD.

- а) Докажите, что высота пирамиды, опущенная из вершины S, проходит через середину AD.
- б) В каком отношении, считая от точки S, плоскость BNM делит высоту пирамиды, если N середина SC, в точка M делит ребро SD в отношении 1:3, считая от точки S.

⇒ Видеоразбор задачи

Задание 3

Дана прямая призма $ABCA_1B_1C_1$. ABC — равнобедренный треугольник с основанием AB. На AB отмечена точка P такая, что AP:PB=3:1. Точка Q делит пополам ребро B_1C_1 . Точка M делит пополам ребро BC. Через точку M проведена плоскость α , перпендикулярная PQ.

- а) Докажите, что прямая AB параллельна плоскости $\alpha.$
- 6) Найдите отношение, в котором плоскость α делит PQ, если $AA_1=5, AB=12,$ $\cos \angle ABC=\frac{3}{5}.$

⇒ Видеоразбор задачи

Задание 4

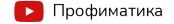
Дана прямая призма, в основании которой равнобедренная трапеция с основаниями AD=5 и BC=4. M — точка, которая делит сторону A_1D_1 в отношении 1:4, K — середина DD_1 .

- а) Доказать, что $MCK \parallel BD$.
- 6) Найти тангенс угла между плоскостью MKC и плоскостью основания, если $\angle BAC = 60^\circ$, а $\angle CKM = 90^\circ$.
- ⇒ Видеоразбор задачи

Задание 5

Основанием прямой призмы $ABCDA_1B_1C_1D_1$ является параллелограмм. На рёбрах A_1B_1 , B_1C_1 и BC отмечены точки M, K и N соответственно, причем $BK:KC_1=1:2$, а AMKN – равнобедренная трапеция с основаниями 2 и 3.

- а) Докажите, что N середина BC.
- 6) Найдите площадь трапеции AMKN, если объем призмы $ABCDA_1B_1C_1D_1$ равен 12, а её высота равна 2.
- ⇒ Видеоразбор задачи



Задание 6

У тетраэдра ABCD грани ABD и ACD перпендикулярны и являются правильными треугольниками со стороной 10. На рёбрах AB, AD и CD взяли точки K, L и M соответственно так, что BK=2, AL=4 и DM=3.

- а) Докажите, что плоскость KLM перпендикулярна ребру CD.
- 6) Найдите длину отрезка, образованного пересечением плоскости KLM с гранью ABC.
- ⇒ Видеоразбор задачи

Задание 7

В основании четырёхугольной пирамиды SABCD лежит квадрат. Плоскость α пересекает рёбра $SA,\ SB,\ SC,\ SD$ в точках $L,\ K,\ M$ и N соответственно, причём SK:KB=3:1, а точки L и M — середины рёбер SA и SD.

- а) Докажите, что четырёхугольник KLMN является трапецией, длины оснований которой относятся как 2:3.
- 6) Найдите высоту пирамиды, если угол между плоскостями ABC и α равен 30° , а площадь сечения пирамиды плоскостью α равна $10\sqrt{2}$, а площадь основания пирамиды равна 32.

⇒ Видеоразбор задачи

Задание 8

Дана пирамида SABCD, в основании которой лежит прямоугольник ABCD. Сечение пирамиды — трапеция KLMN, причём точки K, L, M и N лежат на рёбрах SB, SA, SD и SC соответственно. Известно, что основания этой трапеции KL=4, MN=3, а SK:KB=2:1.

- а) Докажите, что точки M и N середины рёбер SD и SC.
- 6) Пусть H точка пересечения диагоналей прямоугольника ABCD, а SH высота пирамиды SABCD. Найдите SH, если известно, что площадь прямоугольника ABCD равна 48, а площадь трапеции KLMN равна 24.

⇒ Видеоразбор задачи

Ответы

- 1. б) $\frac{27}{5}$ или 5,4
- 2. б) $\frac{1}{2}$ или 0,5
- 3. б) $\frac{16}{25}$ или $0{,}64$
- 4. 6) $\frac{\sqrt{7}}{\sqrt{2}}$
- 5. 6) $\frac{3\sqrt{37}}{2}$.
- 6. 6) $\frac{2\sqrt{2}}{\sqrt{3}}$
- 7. б) 4
- 8. 6) $\frac{44\sqrt{23}}{7}$