

возможно, самый понятный канал по математике

Задача 8 Ященко 2023

При адиабатическом процессе для идеального газа выполняется закон $pV^k=1,3122\cdot 10^7$ Па · м⁴, где p – давление газа (в Па), V — объём газа (в м³), $k=\frac{4}{3}$. Найдите, какой объём V (в м³) будет занимать газ при давлении p, равном $1,25\cdot 10^6$ Па.

Ответ: ______.

⇒ Видеоразбор задачи

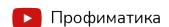
При адиабатическом процессе для идеального газа выполняется закон $pV^k = 81 \cdot 10^4$ Па · м⁴, где p – давление газа (в Па), V – объём газа (в м³), $k = \frac{4}{3}$. Найдите, какой объём V (в м³) будет занимать газ при давлении p, равном $6.25 \cdot 10^5$ Па.

Ответ: ______.

 \Longrightarrow Видеоразбор задачи

Наблюдатель находится на высоте h, выраженной в метрах. Расстояние от наблюдателя до наблюдаемой им линии горизонта, выраженное в километрах, вычисляется по формуле $l=\sqrt{\frac{Rh}{500}}$, где R=6400 км – радиус Земли. На какой высоте находится наблюдатель, если он видит линию горизонта на расстоянии 25,6 километра? Ответ дайте в метрах.


Ответ:


⇒ Видеоразбор задачи

Наблюдатель находится на высоте h, выраженной в метрах. Расстояние от наблюдателя до наблюдаемой им линии горизонта, выраженное в километрах, вычисляется по формуле $l=\sqrt{\frac{Rh}{500}}$, где R=6400 км – радиус Земли. На какой высоте находится наблюдатель, если он видит линию горизонта на расстоянии 60 километров? Ответ дайте в метрах.

Ответ: _____

Б Двигаясь со скоростью v=4 м/с, трактор тащит сани с силой F=90 кH, направленной под острым углом α к горизонту. Мощность, развиваемая трактором, вычисляется по формуле $N=Fv\cos\alpha$. Найдите, при каком угле α (в градусах) эта мощность будет равна 180 кВт $\left(\text{кВт} - \text{это } \frac{\text{кH} \cdot \text{м}}{\text{c}} \right)$.

Ответ: ______.

⇒ Видеоразбор задачи

6 Мяч бросили под острым углом α к плоской горизонтальной поверхности земли. Время полёта мяча (в секундах) определяется по формуле $t=\frac{2v_0\sin\alpha}{g}$. При каком значении угла α (в градусах) время полёта составит 3 секунды, если мяч бросают с начальной скоростью $v_0=30$ м/с. Считайте, что ускорение свободного падения g=10 м/с².

Otret:

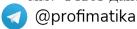
⇒ Видеоразбор задачи

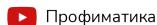
Высота над землей подброшенного вверх мяча меняется по закону $h(t) = 1.4 + 11t - 5t^2$, где h – высота в метрах, t – время в секундах, прошедшее с момента броска. Сколько секунд мяч будет находиться на высоте не менее 7 метров?

Ответ: _____

Ī		
8	Высота над землей подброшенного вверх мяча меняется по закону $h(t) = 1 + $ где h – высота в метрах, t – время в секундах, прошедшее с момента броска. секунд мяч будет находиться на высоте не менее 3 метров?	$11t - 5t^2$, Сколько
	Ответ:	
	\Longrightarrow Видеоразбор задачи	
9	Локатор батискафа, равномерно погружающегося вертикально вниз, и ультразвуковые импульсы частотой 744 МГц. Скорость погружения ба вычисляется по формуле $v=c\cdot\frac{f-f_0}{f+f_0}$, где $c=1500$ м/с — скорость воде, f_0 — частота испускаемых импульсов, f — частота отражённого от дна регистрируемая приёмником (в МГц). Определите частоту отражённого сигнал если скорость погружения батискафа равна 12 м/с.	атискафа в звука в а сигнала,
	Ответ:	
	回貨業利用 金融機能が	

Локатор батискафа, равномерно погружающегося вертикально вниз, испускает ультразвуковые импульсы частотой 217 МГц. Скорость погружения батискафа вычисляется по формуле $v=c\cdot \frac{f-f_0}{f+f_0}$, где c=1500 м/с — скорость звука в воде, f_0 — частота испускаемых импульсов, f — частота отражённого от дна сигнала, регистрируемая приёмником (в МГц). Определите частоту отражённого сигнала в МГц, если скорость погружения батискафа равна 12 м/с.


Ответ: ______.


⇒ Видеоразбор задачи

⇒ Видеоразбор задачи

При температуре 0 °C рельс имеет длину $l_0=10$ м. При возрастании температуры происходит тепловое расширение рельса, и его длина, выраженная в метрах, меняется по закону $l(t^\circ)=l_0(1+\alpha\cdot t^\circ)$, где $\alpha=1,2\cdot 10^{-5}(^\circ C)^{-1}$ – коэффициент теплового расширения, t° – температура (в градусах Цельсия). При какой температуре рельс удлинится на 6 мм? Ответ дайте в градусах Цельсия.

Ответ: _____

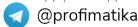
⇒ Видеоразбор задачи

При температуре 0 °C рельс имеет длину $l_0=15$ м. При возрастании температуры происходит тепловое расширение рельса, и его длина, выраженная в метрах, меняется по закону $l(t^\circ) = l_0(1+\alpha \cdot t^\circ)$, где $\alpha=1,2\cdot 10^{-5}(^\circ C)^{-1}$ – коэффициент теплового расширения, t° – температура (в градусах Цельсия). При какой температуре рельс удлинится на 7,2 мм? Ответ дайте в градусах Цельсия.

Ответ: ______

⇒ Видеоразбор задачи

Для обогрева помещения, температура в котором поддерживается на уровне $T_{\rm m}=20~^{\circ}C$, через радиатор отопления пропускают горячую воду. Расход проходящей через трубу радиатора вода $m=0.5~{\rm kr/c}$. Проходя по трубе расстояние x, вода охлаждается от начальной температуры $T_{\rm B}=72~^{\circ}C$ до температуры T, причем $x=\alpha\frac{cm}{\gamma}\log_2\frac{T_{\rm B}-T_{\rm m}}{T-T_{\rm m}}$, где $c=4200~{\rm Br\cdot c}\over{\rm kr\cdot ^{\circ}C}$ – теплоемкость воды, $\gamma=63~{\rm Br}\over{\rm M\cdot ^{\circ}C}$ – коэффициент теплообмена, а $\alpha=1.5$ – постоянная. Найдите, до какой температуры (в градусах Цельсия) охладится вода, если длина трубы радиатора равна $100~{\rm m}$.


Otbet: ______.

⇒ Видеоразбор задачи

Для обогрева помещения, температура в котором поддерживается на уровне $T_{\pi}=15~^{\circ}C$, через радиатор отопления пропускают горячую воду. Расход проходящей через трубу радиатора вода $m=0.5~{\rm kr/c}$. Проходя по трубе расстояние x, вода охлаждается от начальной температуры $T_{\rm B}=79~^{\circ}C$ до температуры T, причем $x=\alpha\frac{cm}{\gamma}\log_2\frac{T_{\rm B}-T_{\rm m}}{T-T_{\rm m}}$,

где $c=4200~{\rm Br\cdot c}\over {\rm kr\cdot ^{\circ}C}$ — теплоемкость воды, $\gamma=63~{\rm Br}\over {\rm M\cdot ^{\circ}C}$ — коэффициент теплообмена, а $\alpha=1,3$ — постоянная. Найдите, до какой температуры (в градусах Цельсия) охладится вода, если длина трубы радиатора равна 130 м.

Ответ:		

Груз массой 0,25 кг колеблется на пружине. Его скорость v меняется по закону $v=v_0\cos\frac{2\pi t}{T}$, где t – время с момента начала колебаний, T=2 с — период колебаний, $v_0=1,6$ м/с. Кинетическая энергия E (в джоулях) груза вычисляется по формуле $E=\frac{mv^2}{2}$, где m – масса груза в килограммах, v – скорость груза в м/с. Найдите кинетическую энергию груза через 56 секунду после начала колебаний. Ответ дайте в джоулях.

Ответ: ______.

⇒ Видеоразбор задачи

Груз массой 0,58 кг колеблется на пружине. Его скорость v меняется по закону $v=v_0\cos\frac{2\pi t}{T}$, где t – время с момента начала колебаний, T=2 с — период колебаний, $v_0=2$ м/с. Кинетическая энергия E (в джоулях) груза вычисляется по формуле $E=\frac{mv^2}{2}$, где m – масса груза в килограммах, v – скорость груза в м/с. Найдите кинетическую энергию груза через 50 секунду после начала колебаний. Ответ дайте в джоулях.

Ответ: ______.

 \Longrightarrow Видеоразбор задачи

17 Расстояние от наблюдателя, находящегося на высоте h м над землей, выраженное в километрах, до видимой им линии горизонта вычисляется по формуле $l=\sqrt{\frac{Rh}{500}}$, где R=6400 км — радиус Земли. Человек, стоящий на пляже, видит горизонт на расстоянии 24 километров. К пляжу ведет лестница, каждая ступенька которой имеет высоту 20 см. На какое наименьшее количество ступенек нужно подняться человеку, чтобы он увидел горизонт на расстоянии не менее 32 километров?

Ответ: _____

⇒ Видеоразбор задачи

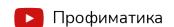
Расстояние от наблюдателя, находящегося на высоте h м над землей, выраженное в километрах, до видимой им линии горизонта вычисляется по формуле $l=\sqrt{\frac{Rh}{500}}$, где R=6400 км – радиус Земли. Человек, стоящий на пляже, видит горизонт на расстоянии 4 километров. На сколько метров нужно подняться человеку, чтобы расстояние до горизонта увеличилось до 24 км?

Ответ: _____

⇒ Видеоразбор задачи

Амплитуда колебаний маятника зависит от частоты вынуждающей силы и определяется по формуле $A(\omega)=\frac{A_0\omega_p^2}{|\omega_p^2-\omega^2|},$ где ω — частота вынуждающей силы (в с $^{-1}$), A_0 — постоянный параметр, $\omega_p=354$ с $^{-1}$ — резонансная частота. Найдите максимальную частоту ω , меньшую резонансной, для которой амплитуда колебаний превосходит величину A_0 не более чем на 12,5%. Ответ дайте в с $^{-1}$.

Ответ: _____


 \Longrightarrow Видеоразбор задачи

Амплитуда колебаний маятника зависит от частоты вынуждающей силы и определяется по формуле $A(\omega)=\frac{A_0\omega_p^2}{|\omega_p^2-\omega^2|}$, где ω — частота вынуждающей силы (в с $^{-1}$), A_0 — постоянный параметр, $\omega_p=330$ с $^{-1}$ — резонансная частота. Найдите максимальную частоту ω , меньшую резонансной, для которой амплитуда колебаний превосходит величину A_0 не более чем на 80%. Ответ дайте в с $^{-1}$.

Ответ:

Автомобиль разгоняется на прямолинейном участке шоссе с постоянным ускорением a км/ч². Скорость вычисляется по формуле $v = \sqrt{2la}$, где l — пройденный автомобилем путь. Найдите ускорение, с которым должен двигаться автомобиль, чтобы, проехав 0,8 км, приобрести скорость 100 км/ч. Ответ выразите в км/ч².

\bigcap_{TDOTT}	
OTBET.	

⇒ Видеоразбор задачи

Автомобиль разгоняется на прямолинейном участке шоссе с постоянным ускорением $a=6500~{\rm km/q^2}$. Скорость вычисляется по формуле $v=\sqrt{2la}$, где l – пройденный автомобилем путь. Найдите, сколько километров проедет автомобиль к моменту, когда он разгонится до скорости $130~{\rm km/q}$.

Ответ: ______.

⇒ Видеоразбор задачи

Небольшой мячик бросают под острым углом α к плоской горизонтальной поверхности земли. Максимальная высота полета мячика, выраженная в метрах, определяется формулой $H=\frac{v_0^2}{4g}(1-\cos 2\alpha)$, где $v_0=12$ м/с — начальная скорость мячика, а g — ускорение свободного падения (считайте g=10 м/с²). При каком наименьшем значении угла α мячик пролетит над стеной высотой 4,4 м на расстоянии 1 м? Ответ дайте в градусах.

Ответ: _____

Мяч бросили под острым углом α к плоской горизонтальной поверхности земли. Время полёта мяча (в секундах) определяется по формуле $t=\frac{2v_0\sin\alpha}{g}$. При каком значении угла α (в градусах) время полёта составит 1,4 секунды, если мяч бросают с начальной скоростью $v_0=14$ м/с². Считайте, что ускорение свободного падения g=10 м/с².

Ответ: ______

⇒ Видеоразбор задачи

Установка для демонстрации адиабатического сжатия представляет собой сосуд с поршнем, резко сжимающим газ. При этом объём и давление связаны соотношением $p_1V_1^{1,4}=p_2V_2^{1,4}$, где p_1 и p_2 – давление газа (в атмосферах) в начальном и конечном состояниях, V_1 и V_2 – объём газа (в литрах) в начальном и конечном состояниях. Изначально объём газа равен 192 л, а давление газа равно одной атмосфере. До какого объёма нужно сжать газ, чтобы давление в сосуде стало 128 атмосфер? Ответ дайте в литрах.

Ответ: _____

⇒ Видеоразбор задачи

Для получения на экране увеличенного изображения лампочки в лаборатории используется собирающая линза с главным фокусным расстоянием f=60 см. Расстояние d_1 от линзы до лампочки может изменяться в пределах от 95 до 115 см, а расстояние d_2 от линзы до экрана — в пределах от 140 до 160 см. Изображение на экране будет четким, если выполнено соотношение

$$\frac{1}{d_1} + \frac{1}{d_2} = \frac{1}{f}.$$

Укажите, на каком наименьшем расстоянии от линзы можно поместить лампочку, чтобы ее изображение на экране было четким. Ответ выразите в сантиметрах.

Ответ: _____

Независимое агентство намерено ввести рейтинг R новостных изданий на основе показателей информативности In, оперативности Op и объективности Tr публикаций. Каждый отдельный показатель — целое число от -1 до 1.

Составители рейтинга считают, что информативность публикаций ценится вчетверо, а объективность – вдвое дороже, чем оперативность, то есть

$$R = \frac{4In + Op + 2Tr}{A}.$$

Найдите, каким должно быть число A, чтобы издание, у которого все показатели максимальны, получило рейтинг 1.

Ответ: _____

⇒ Видеоразбор задачи

Независимое агентство намерено ввести рейтинг R новостных изданий на основе показателей информативности In, оперативности Op и объективности Tr публикаций, а также качества Q сайта. Каждый отдельный показатель – целое число от 0 до 4. Составители рейтинга считают, что информативность публикаций ценится вдвое, а объективность — втрое дороже, чем оперативность и качество сайта, то есть

$$R = \frac{2In + Op + 3Tr + Q}{A}.$$

Найдите, каким должно быть число A, чтобы издание, у которого все показатели максимальны, получило рейтинг 1.

Otbet: _____

⇒ Видеоразбор задачи

Водолазный колокол, содержащий v=5 моль воздуха объёмом $V_1=26$ л, медленно опускают на дно водоёма. При этом происходит изотермическое сжатие воздуха до конечного объёма V_2 (в л). Работа, совершаемая водой при сжатии воздуха, вычисляется по формуле $A=\alpha\nu T\log_2\frac{V_1}{V_2}$, где $\alpha=8.5$ $\frac{\textstyle \Box x}{\textstyle Monb\cdot K}$ – постоянная, T=300K – температура воздуха. Найдите, какой объём V_2 будет занимать воздух в колоколе, если при сжатии воздуха была совершена работа в 25500 $\textstyle \Box x$. Ответ дайте в литрах.

Ответ: _____

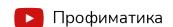
Водолазный колокол, содержащий v=2 моль воздуха объёмом $p_1=2,4$ атмосферы, медленно опускают на дно водоёма. При этом происходит изотермическое сжатие воздуха до конечного давления p_2 в атмосферах . Работа, совершаемая водой при сжатии воздуха, вычисляется по формуле $A=\alpha\nu T\log_2\frac{p_2}{p_1}$, где $\alpha=13,5$ $\frac{\Box x}{\text{моль} \cdot \text{K}}$ – постоянная, T=300K – температура воздуха. Найдите, какое давление p_2 будет занимать воздух в колоколе, если при сжатии воздуха была совершена работа в 16200 $\Box x$. Ответ дайте в атмосферах.

Ответ:

⇒ Видеоразбор задачи

31 Для сматывания кабеля на заводе используют лебёдку, которая равноускоренно наматывает кабель на катушку. Угол, на который поворачивается катушка, изменяется со временем по закону $\phi = wt + \frac{\beta t^2}{2}$, где t — время в минутах, $w = 60^\circ/$ мин — начальная угловая скорость вращения катушки, а $\beta = 6^\circ/$ мин 2 — угловое ускорение, с которым наматывается кабель. Рабочий должен проверить ход его намотки не позже того момента, когда угол намотки ϕ достигнет 3375 $^\circ$. Определите время после начала работы лебёдки, не позже которого рабочий должен проверить её работу. Ответ выразите в минутах.

Ответ: ______.


⇒ Видеоразбор задачи

В телевизоре ёмкость высоковольтного конденсатора $C=5\cdot 10^{-6}$ Ф. Параллельно с конденсатором подключён резистор с сопротивлением $R=6\cdot 10^6$ Ом. Во время работы телевизора напряжение на конденсаторе $U_0=34$ кВ. После выключения телевизора напряжение на конденсаторе убывает до значения U (кВ) за время, определяемое выражением $t=\alpha RC\log_2\frac{U_0}{U}(c)$, где $\alpha=1,7$ – постоянная. Определите напряжение на конденсаторе, если после выключения телевизора прошла 51 с. Ответ дайте в киловольтах.

Ответ: _____

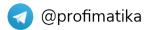
Перед отправкой тепловоз издал гудок с частотой $f_0=292$ Гц. Чуть позже издал гудок подъезжающий к платформе тепловоз. Из-за эффекта Доплера частота второго гудка f больше первого: она зависит от скорости тепловоза по закону $f(v)=\frac{f_0}{1-\frac{v}{c}}$ (Гц), где c –

скорость звука (в м/с). Человек, стоящий на платформе, различает сигналы по тону, если они отличаются не менее чем на 8 Γ ц. Определите, с какой минимальной скоростью приближался к платформе тепловоз, если человек смог различить сигналы, а c=300 м/с. Ответ выразите в м/с.

Ответ:			
OTRET.			

⇒ Видеоразбор задачи

При сближении источника и приёмника звуковых сигналов движущихся в некоторой среде по прямой навстречу друг другу частота звукового сигнала, регистрируемого приемником, не совпадает с частотой исходного сигнала $f_0=130$ Гц и определяется следующим выражением: $f=f_0\frac{c+\nu}{c-\nu}$ (Гц), где c – скорость распространения сигнала в среде (в м/с), а $u\nu=15$ м/с и v=9 м/с — скорости приемника и источника относительно среды соответственно. При какой максимальной скорости с (в м/с) распространения сигнала в среде частота сигнала в приемнике f будет не менее 135 Гц?


Ответ: ______.

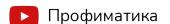
⇒ Видеоразбор задачи

Рейтинг R интернет-магазина вычисляется по формуле $R=r_{\text{пок}}-\frac{r_{\text{пок}}-r_{\text{экс}}}{(K+1)^m},$ где $0{,}02K$

 $m=rac{0.02K}{r_{
m nok}+0.1},\,r_{
m nok}$ — средняя оценка магазина покупателями, $r_{
m skc}$ — оценка магазина, данная экспертами, K — число покупателей, оценивших магазин. Найдите рейтинг интернет-магазина, если число покупателей, оценивших магазин, равно 15, их средняя оценка равна 0.3, а оценка экспертов равна 0.38.

Ответ:	
⇒ Видеоразбор задачи	回交換公司 第35章 2017 第35章 2013 同意以来

При адиабатическом процессе для идеального газа выполняется закон $pV^k = 7,776 \cdot 10^6$ Па · м⁴, где p - давление в газе в паскалях, V - объем газа в кубических метрах, $k = \frac{4}{3}$. Найдите, какой объем V (в куб. м) будет занимать газ при давлении p, равном $3,75 \cdot 10^6$ Па.


Ответ: ______.

Ответы:

- 1. 5,832
- 2. 0,216
- 3. 51,2
- 4. 281,25
- 5. 60
- 6. 30
- 7. 0,6
- 8. 1,8
- 9. 756
- 10. 220,5
- 11. 50
- 12. 40
- 13. 33
- 14. 23
- 15. 0,32
- 16. 1,16
- 17. 175
- 18. 43,75
- 19. 115
- 20. 220
- 21. 6250
- 22. 1,3
- 23. 60
- 24. 30
- 25. 6
- 26. 96
- 27. 7
- 28. 28
- 29. 6,5
- 30. 9,6

14

- 31. 25
- 32. 17
- 33. 8
- 34. 633
- 35. 0,31
- 36. 1,728