Задание 1.

Обычно организмы, расселяющиеся по всему земному шару, могут делать это за счет того, что они способны существовать в различных условиях. Так например, сосна обыкновенная может расти на скалах, на песках, на болотах, приспосабливаясь к различным условиям среды. Однако орхидные — это группа, представители которой как правило узко специализированы, им требуются очень конкретные условия обитания. Как вы думаете, какие механизмы помогли им широко расселиться по земному шару?

Решение. (коэффициент 14)

Одно из основных приспособлений орхидных — это их способность к быстрой эволюции и видообразованию. Среди них происходит быстрая дивергенция за счет приспособления к условиям существования (1 балл). Главным образом это касается умения подстраиваться под имеющихся в наличии насекомых опылителей (1 балл; +1 балл если уточнены особенности внешнего вида цветка/соцветия; +1 балл за каждую особенность, например, за низко расположение соцветие, схожесть с половым партнером, расположение генеративных органов, особую привлекательность и т.д.; +1 балл, если написано об особенностях цветения, например, эфемероиды, долгий срок цветения у некоторых и т.д.).

Возможность эволюционировать таким образом обеспечивается некоторыми биологическими особенностями Орхидных.

Орхидным свойственно производство огромного количества мелких семян. Это позволяет широко распространять семена, хотя бы некоторые из которых могут попасть в подходящие условия (1 балл).

Возможность производить много семян связана с тем, что в семенах орхидных почти не содержится запаса питательных веществ (1 балл). Прорастание семени на начальной стадии как правило обеспечивается взаимодействием с симбиотическими грибами, которые помогают молодому растению прорастать.

Орхидеи зависят от симбиотических грибов. Несмотря на то, что каждый вид орхидных предпочитает определенный вид гриба, грибы эти достаточно обычные и широко распространены по земному шару (1 балл).

Орхидные часто осваивают местообитания, которые растения других семейств занимают неохотно. Например, среди орхидных много эпифитов (использующих в качестве субстрата для роста другие растения). Эпифитные орхидные вырабатывают специфические приспособления к своему образу жизни, что также способствует образованию мелких видов, которые распространяются вместе с теми видами, на которых они живут. Также среди орхидных много паразитов. В этом случае ситуация аналогичная — вырабатыва-

лист 2 из 6

ются специфические приспособления для сожительства с видом-хозяином, и вид-паразит распространяется следом за видом, на котором он паразитирует (1 балл).

Представители Орхидных обычно опыляются насекомыми и вырабатывают разнообразные приспособления, позволяющие приспособиться к опылению разными группами насекомых (1 балл за описание приспособлений и +1 балл за развернутое описание, как это связанно именно с распространением). При этом в ряде случаев каждый вид приспособлен к опылению одним видом (например, растения рода Офрис, которые используют стратегию имитации самки насекомого), а в других случаях виды наоборот имеют очень широкий круг опылителей (1 балл). В первом случае смена опылителя может оказаться связана с формированием нового вида орхидей, а во втором орхидеи могут распространяться, используя разных опылителей на разных территориях (1 балл).

Задание 2.

Предположим, что ученые выловили в море животное, которое никогда ранее не встречалось в данной акватории. Предложите методы, которыми можно было бы определить, откуда и каким путем «пришло» это животное.

Постарайтесь по возможности подробно описать методы и те выводы, которые вы сможете сделать на их основе. Имейте в виду, что животные могут быть очень разного размера.

Решение. (коэффициент 11)

Вопросы, на которые надо ответить, если мы нашли нехарактерное животное:

- 1. Животное должно быть максимально точно определено по морфологическим признакам. Желательно до подвида, если эта категория приложима к данному виду (1 балл).
- 2. Каков природный ареал данного вида и насколько близко он подходит к месту обнаружения животного (1 балл).
- 3. К какой экологической группе относится наше животное планктон, бентос, нектон? Это определит их возможности к самостоятельному передвижению и зависимость от течений (1 балл).
- 4. Если животное принадлежит к нектону (передвигается самостоятельно), то надо изучить карту миграций вида (1 балл).
- 5. Если это крупное животное, то хорошо бы понять, имеем ли мы дело с заблудившимся одиночкой или же с отклонившейся от привычного маршрута группой (2 балла).
- 6. В некоторых случаях имеет смысл рассмотреть возможность побега из зоопарка (2 балла).

- 7. Если это планктон, то необходимо изучить карту течений, причем, как постоянных, так и временных, существующих только в какой-то период или при особых условиях (1 балл).
- 8. В случае бентосного животного необходимо выяснить есть ли у него планктонная личинка (см. предыдущий пункт) или какие другие способы распространения использует данный вид (2 балла).
- 9. Если возможны несколько вариантов заноса из разных областей, то может быть использовано генотипирование образца и сравнение с имеющимися популяциями, которое позволит понять откуда данный вид пришел в действительности (1 балл).
- 10. В некоторых случаях имеет смысл изучить карту судоходства в данной местности и предусмотреть возможность искусственного заноса данного вида на поверхности судов или с балластными водами (2 балла).

Задание 3.

Все мы знаем, как много бед вирусы приносят человечеству. Подумайте, могут ли быть случаи, когда вирусы приносят человеку пользу? Если да – то постарайтесь описать, какую и в каких областях жизни.

Решение. (коэффициент 6)

Вирус давно стали инструментом, который используется человеком в своих целях.

1) Использование для уничтожения каких-то организмов. В первую очередь в медицине используются бактериофаги для борьбы с бактериальными инфекциями (1 балл). Этот метод становится особенно перспективным в связи с распространением среди болезнетворных бактерий множественной устойчивости к антибиотикам. Можно использовать его и для борьбы с болезнетворными грибами, простейшими.

Также вирусы могут использоваться для борьбы с организмами, которые человеком по каким-то причинам рассматриваются как вредители. Это могут быть насекомые, млекопитающие, растения. В принципе, поскольку вирусы есть у всех, можно использовать этот способ для уничтожения любых нежелательных организмов.

2) Получение вакцин (2 балла) — первая в истории вакцина против оспы была получена на основе вируса осповакцины, который вызывает неопасное заболевание, при этом стимулируя образование перекрестного иммунитета к очень опасному вирусу оспы. Аналогичный принцип (использование неопасного вируса, позволяющего получить иммунитет к опасному вирусному заболеванию) используется и в некоторых других вакцинах. Чаще современные вакцины используют ослабленные или убитые вирусы (3 балла). Кроме того, постоянно расширяется круг генноинженерных вакцин, в которых вирусы ис-

пользуются в качестве агента, который сам лишен способности размножаться в организме человека, но может производить в нем белок другого вируса, который необходим для выработки антител к другому болезнетворному вирусу. В частности, по этому принципу построены несколько вакцин к COVID-19.

3) Вирусы применяются в самых разных отраслях биотехнологии. Особенно часто они используются в качестве векторов, позволяющих вносить в клетки гены других организмов (2 балла). В зависимости от используемого вируса можно внести ДНК или РНК в разных формах, заставить гены встраиваться в геном хозяина или размножаться автономно. Также можно с помощью вируса заставить клетки вырабатывать какие-то специфические белки (2 балла).

Вирусные векторы используются чрезвычайно широко

- в научных целях для изучения свойств различных генов и белков, поскольку с помощью вирусов можно как включить, так и выключить работу определенных генов и выработку белков (2 балла);
- в вирусных векторах создают библиотеки генов разных клеток и организмов (3 балла);
- в целях медицины, где с помощью вирусных векторов можно вводить гены, компенсирующие генную недостаточность, приводящую к определенным заболеваниям (4 балла). Это чрезвычайно бурно развивающееся направление в современной медицине. Ученые надеются, что в будущем подобные методы можно будет использовать для выработки индивидуального подхода к лечению болезней;
- в медицине вирусы могут использоваться для избирательного уничтожения определенных клеток в организме человека (например, раковых), причем возможно как прямое уничтожение больных клеток, так и модификация, которая делает их уязвимой для иммунитета человека (4 балла);
- также вирусные векторы используются для модификации любых других организмов, использующихся человеком (сельскохозяйственных, лекарственных и других) (1 балл).
- 4) Использование вирусов в науке и биотехнологии не ограничивается их применением в качестве векторов. Из вирусов выделены многие белки, не свойственные клеткам, которые позволяют производить операции с ДНК, РНК и белками. Самым известным примером таких белков является, наверное, обратная транскриптаза, которая может синтезировать цепь ДНК на матрице РНК (2 балла).

Также не стоит забывать, что многие открытия в молекулярной и клеточной биологии были сделаны при изучении вирусов и их жизнедеятельности.

5) Есть и случаи, когда человек использовал и использует вирусы, не всегда

даже зная об их участии. Так многие сорта растений с пятнистыми и пестрыми цветками появились именно вследствие заражения этих растений вирусами, причем пестроцветковые сорта тюльпанов высоко ценились в Голландии задолго до того, как вирусы вообще были открыты. Известны случаи, когда заражение организма каким-то вирусом (который может и не проявляться) предотвращает его заражение другими родственными и более опасными вирусами. Сейчас это свойство также может использоваться в медицине и сельском хозяйстве (1 балл).

- 6) В последние десятилетия вирусные частицы находят применение для создания на их основе электронных устройств, микрочипов для различных целей, а также вирусы используют в качестве наноразмерных образцов (1 балл).
- 7) Наконец, стоит отметить роль вирусов в поддержании стабильности численности природных популяций самых разнообразных организмов, что тоже может быть немаловажно для человечества (1 балл).

Задание 4.

Всемирные силы гравитации непреодолимы: они не только дают нам возможность прочно стоять на ногах, но и заставляют нас падать с любых наклонных поверхностей, что уже говорить о том, чтобы ходить вверх-тормашками. Тем не менее, чтобы освоить разнообразные микроместообитания: жить в горах, лазать по отвесным скалам и горам, по листьям и стволам, у животных появились разнообразные приспособления. Приведите примеры таких животных и объясните, какие адаптации позволяют им перемещаться по крутым склонам и поверхностям с отрицательным углом наклона. Какие физические силы работают в каждом случае?

Решение. (коэффициент 7)

Самые простые приспособления — когти и крепкие лапы **(1 балл)**. Животное цепляется за субстрат, а прочное прикрепление обеспечивается сильными мышцами.

Если субстрат такой, что его можно обхватить (ветки, стволы, лианы) хорошо работают механизмы, позволяющие обхватить ветку, чаще всего лапами, реже — хвостом или всем телом (1 балл).

У некоторых животных, приспособленных к лазанию по деревьям, пальцы срастаются, чтобы крепче хвататься за ветки (хамелеоны, ленивцы, некоторые приматы) (1 балл). А у ленивцев суставы на лапах фиксируются, что позволяет им висеть на ветке, не затрачивая усилий (1 балл). Лазающие птицы помогают себе тем, что еще и подпархивают (1 балл).

У скальных жителей часто тоже развиты сильные когти, позволяющие цепляться за мелкие выступы и трещины (1 балл).

У некоторых, например, у даманов, пальцы срастаются и образуют подушкуприсоску, постоянно смачиваемую готовыми железами (1 балл). Мышцы там напрягаются и они как присоской держатся на субстрате.

Что-то вроде присоски есть у лягушек - влажные подушки пальцев позволяют липнуть к гладким поверхностям (1 балл). Кроме того, они прилипают животом (1 балл).

У гекконов и некоторых анализов (хамелеолисов) на пальцах есть специальные пластинки, на которых отрастают микрощетинки, способные цепляться за микронеровности поверхности (1 балл).

Если говорить про скелетные адаптации млекопитающих, то у древесных видов, как правило, есть ключица, которая позволяет раздвигать передние лапы широко и в разные стороны (1 балл). Если ее нет, как у белок, то они раздвигают лапы в локтях (1 балл). Ну а приматы и шерстокрылы прямо на это дело и заточены (1 балл).

У мух и других насекомых тоже имеются присоски, коготки и щетинки, чтобы ходить вниз головой (1 балл).

Если говорить о силах — там в первую очередь действуют силы трения (1 балл). При очень тесном взаимодействии гладких поверхностей могут возникать ван-дер-ваальсовы взаимодействия, например, у гекконов (1 балл).

Также некоторые животные используют липкие выделения, которыми можно приклеиваться к субстрату, например, таким способом пользуются многие моллюски. Здесь работают силы адгезии (1 балл).

Некоторые могут покрывать поверхность какими-то выделениями, по которым потом можно будет удобно передвигаться. Например, пауки могут прикреплять паутину и потом бегать по ней (1 балл).