Единый государственный экзамен по МАТЕМАТИКЕ Тренировочный вариант № 386

Профильный уровень Инструкция по выполнению работы

Экзаменационная работа состоит из двух частей, включающих в себя 18 заданий. Часть 1 содержит 11 заданий с кратким ответом базового и повышенного уровней сложности. Часть 2 содержит 7 заданий с развёрнутым ответом повышенного и высокого уровней сложности.

На выполнение экзаменационной работы по математике отводится 3 часа 55 минут (235 минут).

Ответы к заданиям 1–11 записываются по приведенному ниже <u>образцу</u> в виде целого числа или конечной десятичной дроби. Числа запишите в поля ответов в тексте работы, а затем перенесите в бланк ответов № 1.

При выполнении заданий 12–18 требуется записать полное решение и ответ в бланке ответов № 2.

Все бланки ЕГЭ заполняются яркими чёрными чернилами. Допускается использование гелевой или капиллярной ручки.

При выполнении заданий можно пользоваться черновиком. Записи в черновике, а также в тексте контрольных измерительных материалов не учитываются при оценивании работы.

Баллы, полученные Вами за выполненные задания, суммируются. Постарайтесь выполнить как можно больше заданий и набрать наибольшее количество баллов.

После завершения работы проверьте, чтобы ответ на каждое задание в бланках ответов №1 и №2 был записан под правильным номером.

Желаем успеха!

Справочные материалы

$$\sin^{2} \alpha + \cos^{2} \alpha = 1$$

$$\sin 2\alpha = 2\sin \alpha \cdot \cos \alpha$$

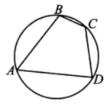
$$\cos 2\alpha = \cos^{2} \alpha - \sin^{2} \alpha$$

$$\sin(\alpha + \beta) = \sin \alpha \cdot \cos \beta + \cos \alpha \cdot \sin \beta$$

$$\cos(\alpha + \beta) = \cos \alpha \cdot \cos \beta - \sin \alpha \cdot \sin \beta$$

Часть 1

Ответом к заданиям 1-11 является целое число или конечная десятичная дробь. Во всех заданиях числа предполагаются действительные, если отдельно не указано иное. Запишите число в поле ответа в тексте работы, затем перенесите его в БЛАНК ОТВЕТОВ №1 справа от номера соответствующего задания, начиная с первой клеточки. Каждую цифру, знак «минус» и запятую пишите в отдельной клеточке в соответствии с приведёнными в бланке образцами. Единицы измерений писать не нужно.

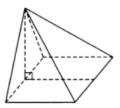

1. Решите уравнение $\sin \frac{\pi(x+2)}{6} = \frac{\sqrt{3}}{2}$. В ответе укажите наибольший отрицательный корень.

Ответ: ______.

2. Чтобы пройти в следующий круг соревнований, футбольной команде нужно набрать хотя бы 4 очка в двух играх. Если команда выигрывает, она получает 3 очка, в случае ничьей — 1 очко, если проигрывает — 0 очков. Найдите вероятность того, что команде удастся выйти в следующий круг соревнований. Считайте, что в каждой игре вероятности выигрыша и проигрыша одинаковы и равны 0,4.

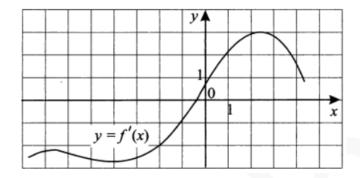
Ответ: _____

3. Точки А, В, С, D, расположенные на окружности, делят эту окружность на четыре дуги АВ, ВС, СD и АD, градусные величины которых относятся как 4:2:3:6. Найдите угол АВС. Ответ дайте в градусах.



Ответ:

4. Найдите значение выражения $\frac{\log_2^2 14 + \log_2 14 \cdot \log_2 7 - 2 \log_2^2 7}{\log_2 14 + 2 \log_2 7}$

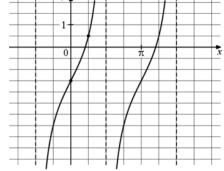

Ответ: ______.

5. Основанием пирамиды служит прямоугольник, одна боковая грань перпендикулярна плоскости основания, а три другие боковые грани наклонены к плоскости основания под углом 30°. Высота пирамиды равна 8. Найдите объём пирамиды.

Ответ: .

6. На рисунке изображен график функции y=f'(x) - производной функции f(x). Найдите абсциссу точки, в которой касательная к графику y=f(x) параллельна прямой y=-2x+12 или совпадает с ней.

Ответ: _____


7. Расстояние от наблюдателя, находящегося на высоте h м над землей, выраженное в километрах, до наблюдаемой им линии горизонта вычисляется по формуле $l=\sqrt{\frac{Rh}{500}},$ где $R=6400\,$ км — радиус Земли. Человек, стоящий на пляже, видит горизонт на расстоянии $4,8\,$ км. На сколько метров нужно подняться человеку, чтобы расстояние до горизонта увеличилось до $6,4\,$ километров?

Ответ: _____

8. Пешеход шел из деревни на станцию. Пройдя 3 км за час, он рассчитал, что опаздывает на 40 мин на поезд, если будет двигаться с той же скоростью. Поэтому он увеличил скорость до 4 км/час и пришел на станцию за 40 мин до отхода поезда. Найти расстояние (в км) между станцией и деревней.

Ответ: .

9. На рисунке изображен график функции $f(x) = a \cdot tgx + b$. Найдите a .

Ответ: _____

10. В таблице показано распределение случайной величины X. Найдите математическое ожидание этой случайной величины.

Значение Х	-4	0	1	3
Вероятности	0,2	0,1	0,4	0,3

Ответ: ______.

11. Найдите точку минимума функции $y = 2x^2 - 5x + \ln x - 3$.

Ответ: _____

Не забудьте перенести все ответы в бланк ответов № 1 в соответствии с инструкцией по выполнению работы.

Проверьте, чтобы каждый ответ был записан в строке с номером соответствующего задания

Часть 2

Для записи решений и ответов на задания 12—18 используйте БЛАНК ОТВЕТОВ №2. Запишите сначала номер выполняемого задания (12, 13 и т.д.), а затем полное обоснованное решение и ответ. Ответы записывайте чётко и разборчиво.

- **12.** A) Решите уравнение $\cos^2 3x + \cos^2 4x + \cos^2 5x = \frac{3}{2}$
 - Б) Найдите все корни уравнения, принадлежащие отрезку $\left[rac{\pi}{2};\pi
 ight]$
- **13.** В правильной четырёхугольной пирамиде SABCD точка К является серединой ребра SD, а точка L серединой стороны BC основания ABCD. Плоскость AKL пересекает ребро SC в точке N.
- A) Докажите, что SN: NC=2:1.
- Б) Найдите угол между плоскостями AKL и ABC, если AB = 10, а высота пирамиды равна 20.
- **14.** Решите неравенство: $\log_{\frac{1}{2}} (\log_2 (\log_{x-1} 9)) > 0$
- **15.** Евгений взял 15 января кредит на сумму 1 млн рублей на 6 месяцев. Условия его возврата таковы. Каждый месяц 1-го числа долг возрастает на целое число r процентов по сравнению с концом предыдущего месяца. Со 2-го по 14-е число каждого месяца необходимо выплатить часть долга. Каждый месяц 15-го числа долг должен составлять некоторую сумму в соответствии со следующей таблицей.

Дата	15.01	15.02	15.03	15.04	15.05	15.06	15.07
Долг, млн рублей	1	0,9	0,8	0,7	0,6	0,5	0

Найти наименьшее значение r, при котором общая сумма выплат будет составлять более 1,25 млн рублей.

- **16.** В треугольнике ABC точка D лежит на стороне BC. В треугольники ABD и ACD вписаны окружности, и к ним проведена общая внешняя касательная (отличная от BC), пересекающая AD в точке K.
- А) Докажите, что длина отрезка АК не зависит от положения точки D на BC.
- Б) Найдите длину отрезка АК, если периметр треугольника ABC равен 30, а длина стороны BC равна 10.
- **17.** Найдите все значения параметра a , при каждом из которых уравнение

$$\frac{x+2}{|x+2|} + |x| \cdot (x^2 - 48) = a$$

имеет ровно три решения.

18. Множество простых делителей числа n будем называть ДНК этого числа. Числа m и n, имеющие одинаковые ДНК, будем называть родственными. Например, числа 12 и 18 родственные, т.к. их ДНК= $\{2,3\}$.

Число m называется симметричным с числом n, если оно записано теми же цифрами, но в обратном порядке. При этом если последними цифрами числа n были нули, то в начале числа m они отбрасываются.

- А) Пусть число n делится на 10. Может ли оно быть родственным со своим симметричным числом?
- Б) Сумма первой и последней цифр натурального числа равна 13. Может ли оно быть родственным со своим симметричным числом?
- В) Найдите минимальное и максимальное составное трёхзначное число, у которого нет трёхзначных родственных чисел.

Проверьте, чтобы каждый ответ был записан рядом с номером соответствующего задания.

Задание	Ответ
1	-10
2	0,32
3	108
4	1
5	1024
6	-2
7	1,4
8	19
9	2
10	0,5
11	1

Задание	Ответ	
12	A) $\frac{\pi}{16} + \frac{\pi n}{8}; \pm \frac{\pi}{3} + \pi n \ n \in \mathbb{Z}$ 5) $\frac{9\pi}{16}; \frac{2\pi}{3}; \frac{11\pi}{16}; \frac{13\pi}{16}; \frac{15\pi}{16}$	
13	$\text{5) } arctg \frac{4}{\sqrt{5}}$	
14	(4;10)	
15	6	
16	Б) 5	
17	-127;[-89;-87]1	
18	А) нет, Б) нет, В) 121;998	