ВСЕРОССИЙСКАЯ ПРОВЕРОЧНАЯ РАБОТА

ХИМИЯ 11 КЛАСС

Вариант 2

Инструкция по выполнению работы

Проверочная работа включает в себя 15 заданий. На выполнение работы по химии отводится 1 час 30 минут (90 минут).

Оформляйте ответы в тексте работы согласно инструкциям к заданиям. В случае записи неверного ответа зачеркните его и запишите рядом новый.

При выполнении работы разрешается использовать следующие дополнительные материалы:

- Периодическая система химических элементов Д.И. Менделеева;
- таблица растворимости солей, кислот и оснований в воде;
- электрохимический ряд напряжений металлов;
- непрограммируемый калькулятор.

При выполнении заданий Вы можете использовать черновик. Записи в черновике проверяться и оцениваться не будут.

Советуем выполнять задания в том порядке, в котором они даны. Для экономии времени пропускайте задание, которое не удаётся выполнить сразу, и переходите к следующему. Если после выполнения всей работы у Вас останется время, Вы сможете вернуться к пропущенным заданиям.

Баллы, полученные Вами за выполненные задания, суммируются. Постарайтесь выполнить как можно больше заданий и набрать наибольшее количество баллов.

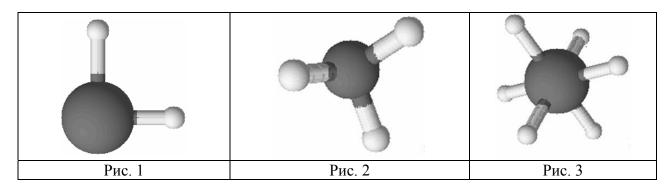

Желаем успеха!

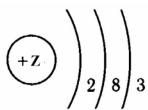
Таблица для внесения баллов участника

Номер задания	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	Сумма баллов	Отметка за работу
Баллы																	

1

Одним из научных методов познания веществ и химических явлений является моделирование. Так, модели молекул отражают характерные признаки реальных объектов. На рис. 1–3 изображены модели молекул трёх веществ.

Проанализируйте данные модели молекул веществ и определите вещество:


- 1) состав которого выражается формулой SF₆;
- 2) в котором один из атомов проявляет валентность, равную III.

Запишите в таблицу номера рисунков и укажите количество атомов в молекулах выбранных веществ.

Вещество	Номер рисунка	Количество атомов в молекуле
состав которого выражается формулой SF_6		
в котором один из атомов проявляет валентность, равную III		

2

На рисунке изображена модель электронного строения атома некоторого химического элемента.

Ознакомьтесь с предложенной моделью и выполните следующие задания:

- 1) определите заряд ядра атома химического элемента, атом которого имеет такое электронное строение;
- 2) укажите номер периода и номер группы в Периодической системе химических элементов Д.И. Менделеева, в которых расположен этот элемент;
- 3) определите, к какой группе оксидов (кислотным, основным или амфотерным) относится высший оксид этого химического элемента.

Ответы запишите в таблицу.

Заряд ядра	№ периода	№ группы	Оксид

КОП	
КОД	

3)	2019 год объявлен Международным годом Периодической таблицы химических элементов
	Д.И. Менделеева. Мировое научное сообщество отметит 150-летие открытия
	Периодического закона химических элементов Д.И. Менделеевым в 1869 году.
	Периодическая система химических элементов Д.И. Менделеева – богатое хранилище
	информации о химических элементах, их свойствах и свойствах их соединений.
	Так, например, известно, что с увеличением порядкового номера химического элемента
	кислотный характер высших оксидов в периодах усиливается, а в группах ослабевает.
	Учитывая эти закономерности, расположите в порядке усиления кислотных свойств их
	высших оксидов следующие элементы: алюминий, сера кремний. В ответе запишите
	символы элементов в нужной последовательности.
	Ответ:
L	

В приведённой ниже таблице представлены примеры формул веществ с ковалентной полярной и ионной химической связью.

Химическая связь				
Ковалентная полярная	Ионная			
• NCl ₃ ;	• CaCl ₂ ;			
• CO;	 CaCl₂; Li₂O; 			
• HBr	• NaI			

Используя данную информацию, определите вид химической связи:

- 1) во фториде калия (КF);
- 2) в молекуле сероуглерода (CS_2).

Запишите ответ в отведённом месте:

1) Во фториде калия	
 2) В сероуглероде	

Прочитайте следующий текст и выполните задания 5-7.

Оксид меди(II) (CuO) — вещество чёрного цвета, в обычных условиях довольно устойчивое и практически нерастворимое в воде. В природе встречается в виде минерала тенорита (мелаконита). Его можно получить прокаливанием солей: гидроксокарбоната меди(II) — основного компонента малахита (CuOH) $_2$ CO $_3$, нитрата (Cu(NO $_3$) $_2$) или карбоната меди(II) (CuCO $_3$), а также разложением соответствующего гидроксида (Cu(OH) $_2$).

Для оксида меди(II) характерны слабые основные свойства, которые проявляются в реакциях с кислотами, например, с серной (H_2SO_4), соляной (HCl) и уксусной (CH_3COOH). При этом образуются соответствующая соль двухвалентной меди и вода.

Оксид меди применяют в производстве медно-рубинового стекла, а также при производстве обычного стекла и эмалей для придания им зелёной и синей окраски.

5	по четырём группам, как показано на схеме. В эту схему для каждой из четырёх групп
	<i>впишите</i> по одной химической формуле веществ, из тех, о которых говорится в приведённом выше тексте.
	Сложные вещества
	оксид основание кислота соль
6	1) Составьте молекулярное уравнение реакции получения оксида меди(II) из гидроксида меди(II).
	Ответ:
	2) Укажите, к какому типу (соединения, разложения, замещения, обмена) относится эта реакция.
	Ответ:
7	1. Составьте молекулярное уравнение, описанной в тексте реакции между оксидом меди(II) и соляной кислотой.
	Ответ:
	2. Какие признаки протекания реакции можно при этом ожидать?
	Ответ:

8	В исследованной воде из местного водоёма были обнаружены следующие анионы: Br^- , NO_3^- , F^- . Для проведения качественного анализа к этой воде добавили раствор $AgNO_3$.
	1. Какие изменения в растворе можно наблюдать при проведении данного опыта (концентрация веществ достаточная для проведения анализа)?
	Ответ:
	2. Запишите сокращённое ионное уравнение произошедшей химической реакции.
	Ответ:
9	Дана схема окислительно-восстановительной реакции. $NH_4Cl + NaNO_3 \rightarrow N_2O + NaCl + H_2O$ 1. Составьте электронный баланс этой реакции.
	Ответ:
	2. Укажите окислитель и восстановитель.
<u></u>	Ответ:
	3. Расставьте коэффициенты в уравнении реакции.
	Ответ:
10	Дана схема превращений: $ K_2 \text{CO}_3 \rightarrow \text{CaCO}_3 \rightarrow \text{CO}_2 \rightarrow \text{NaHCO}_3 $
	Напишите молекулярные уравнения реакций, с помощью которых можно осуществите указанные превращения.
	1)
: :	

Для выполнения заданий 11-13 используйте вещества, структурные формулы которых приведены в перечне:

- 1) $CH_3-CH-CH_2-CH_3$ 2) $CH_3-CH_2-C < O \\ CH_3$ 3) CH_3-CECH 4) $CH_3-CH=CH_2$ 5) $CH_3-CH_2-C < O \\ CH_3$

- Из приведённого перечня выберите вещества, которые соответствуют указанным в таблице 11 классам/группам органических соединений. Запишите в таблицу номера, под которыми указаны эти соединения.

Алкин	Карбоновая кислота

- В предложенные схемы химических реакций впишите структурные формулы пропущенных **12** веществ, выбрав их из приведённого выше перечня. Расставьте коэффициенты в полученных схемах, чтобы получились уравнения химических реакций.
 - 1) + $Br_2 \longrightarrow CH_3$ -CH- CH_2 Br Br
 - 2) + H_2 $\xrightarrow{\kappa a \tau}$ $CH_3 CH_2 CH_2$ OH
- Бутанон бесцветная жидкость с характерным запахом, широко применяется в качестве растворителя лаков, красок, клеев, некоторых полимеров и т.п. Бутанон можно получить в соответствии с приведённой схемой превращений:

$$\mathsf{CH}_{\overline{3}}\mathsf{CH}_{2}\text{-}\mathsf{CH} - \mathsf{CH}_{3} \xrightarrow{\mathsf{KOH}_{(\mathsf{BOJH.})}} \quad \mathsf{X} \xrightarrow{\mathsf{CuO}} \quad \mathsf{CH}_{3}\text{-}\mathsf{CH}_{2}\text{-}\mathsf{C} - \mathsf{CH}_{3}$$

Впишите в заданную схему превращений структурную формулу вещества X, выбрав его из предложенного выше перечня. Запишите уравнения двух реакций, с помощью которых можно осуществить эти превращения. При написании уравнений реакций используйте структурные формулы органических веществ.

Ответ:	
1)	

Запишите название вещества Х.

Ответ:

14)	Одним из важных понятий в экологии и химии является «предельно допустимая концентрация» (ПДК). ПДК — это такая концентрация вредного вещества в окружающей среде, присутствуя в которой постоянно, данное вещество не оказывает прямого или косвенного неблагоприятного влияния на настоящее или будущее поколение в течение всей жизни, не снижает работоспособности человека, не ухудшает его самочувствия и условий жизни. ПДК хлора в воде плавательных бассейнов составляет 0,5 мг/м³. Для хлорирования воды в бассейне глубиной 2 м, шириной 15 м и длиной 25 м использовали 450 мг хлора. Определите и подтвердите расчётами, превышает ли концентрация хлора в
	воде данного бассейна значение ПДК. Предложите способ, позволяющий снизить концентрацию хлора в воде.
	Ответ:
15)	Для отбеливания древесины используют раствор щавелевой кислоты. Для приготовления раствора смешали 50 кг воды и 3 кг щавелевой кислоты. Рассчитайте, какую массу раствора при этом получили и массовую долю щавелевой кислоты в образовавшемся растворе. Запишите подробное решение задачи.
	Ответ:

1

Ответы и критерии оценивания проверочной работы по химии

Содержание верного ответа и указания по оцениванию Баллы (допускаются иные формулировки ответа, не искажающие его смысла) Вещество Номер рисунка Количество атомов в молекуле 3 7 состав которого выражается формулой SF₆ 2 котором 4 один ИЗ атомов проявляет валентность, равную III Ответ правильный и полный, содержит все названные выше элементы 2 Допущена ошибка в одном из элементов ответа 1 Допущено две и более ошибки 0 Максимальный балл 2

2	Содержание верного ответа и указания по оцениванию (допускаются иные формулировки ответа, не искажающие его смысла)				Баллы		
		Заряд ядра № № Оксид					
	периода группы						
	+13 3 III или IIIA амфотерный				амфотерный		
	Ответ правильный и полный, содержит все названные выше элементы					2	
	Допущена ошибка в одном из элементов ответа					1	
	Допущено две и более ошибки, или ответ отсутствует					0	
	Максимальный балл					2	

(3)	Содержание верного ответа и указания по оцениванию	Баллы			
3	(допускаются иные формулировки ответа, не искажающие его смысла)				
	Записан ряд химических элементов:				
	$Al \rightarrow Si \rightarrow S$ (или Al, Si, S)				
	Записана правильная последовательность символов	1			
	Последовательность символов записана неверно				
	Максимальный балл	1			

1	Содержание верного ответа и указания по оцениванию	Баллы
•	(допускаются иные формулировки ответа, не искажающие его смысла)	
	Элементы ответа:	
	1) В фториде калия ионная связь.	
	2) В сероуглероде ковалентная полярная связь	
	Ответ правильный и полный, содержит все названные выше элементы	2
	Ответ содержит один из названных выше элементов	1
	Все элементы ответа записаны неверно, или ответ отсутствует	0
	Максимальный балл	2

(5)	Содержание верного ответа и указания по оцениванию	Баллы
5	(допускаются иные формулировки ответа, не искажающие его смысла)	
	Элементы ответа:	
	Оксид: СиО;	
	Основание: Cu(OH) ₂ ;	
	Кислота: CH ₃ COOH, HCl, H ₂ SO ₄ ;	
	Соль: Cu(NO ₃) ₂ , CuCO ₃ или (CuOH) ₂ CO ₃	
	Ответ правильный и полный, содержит все названные выше элементы	2
	Правильно заполнены три ячейки схемы	1
	Допущено две и более ошибки	0
	Максимальный балл	2

<u>6</u>	Содержание верного ответа и указания по оцениванию	Баллы			
U	(допускаются иные формулировки ответа, не искажающие его смысла)				
	Элементы ответа:				
	$1) Cu(OH)_2 = CuO + H_2O$				
	2) Реакция разложения				
	Ответ правильный и полный, содержит все названные выше элементы	2			
	Ответ включает один из названных выше элементов	1			
	Все элементы ответа записаны неверно	0			
	Максимальный балл	2			

7	Содержание верного ответа и указания по оцениванию	Баллы			
	(допускаются иные формулировки ответа, не искажающие его смысла)				
	Элементы ответа:				
	1) $CuO + 2HCl = CuCl_2 + H_2O$				
	2) Появление у раствора голубого цвета, растворение чёрного порошка				
	Ответ правильный и полный, содержит все названные выше элементы	2			
	Ответ включает один из названных выше элементов	1			
	Все элементы ответа записаны неверно	0			
	Максимальный балл	2			

8	Содержание верного ответа и указания по оцениванию	Баллы
•	(допускаются иные формулировки ответа, не искажающие его смысла)	
	Элементы ответа:	
	1) наблюдается выпадение (светло-жёлтого) осадка	
$2) Ag^{+} + Br^{-} = AgBr \downarrow$		
	Ответ правильный и полный, содержит все названные выше элементы	2
	Допущена ошибка в одном из элементов ответа	1
	Все элементы ответа записаны неверно	0
	Максимальный балл	2

Все элементы ответа записаны неверно

0

Максимальный балл

Содержание верного ответа и указания по оцениванию	Баллы			
(допускаются иные формулировки ответа, не искажающие его смысла)				
Элементы ответа:				
1) Составлен электронный баланс:				
$1 \mid N^{+5} + 4\bar{e} \to N^{+1}$				
$1 \mid \mathbf{N}^{-3} - 4\bar{\mathbf{e}} \to \mathbf{N}^{+1}$				
2) Указано, что азот в степени окисления –3 (или NH ₄ Cl) является				
восстановителем, а азот в степени окисления +5 (или NaNO ₃) – окислителем; 3) Составлено уравнение реакции:				
			$NH_4Cl + NaNO_3 = N_2O + NaCl + 2H_2O$	
Ответ правильный и полный, включает в себя все названные выше элементы Правильно записаны два из названных выше элементов ответа				
			Правильно записан один из названных выше элементов ответа	1

Содержание верного ответа и указания по оцениванию	Баллы			
(допускаются иные формулировки ответа, не искажающие его смысла)				
Элементы ответа:				
Написаны уравнения реакций, соответствующие схеме превращений:				
1) $K_2CO_3 + CaCl_2 = CaCO_3 + 2KCl$				
2) CaCO3 + 2HCl = CaCl2 + CO2 + H2O				
3) $CO_2 + NaOH = NaHCO_3$				
Правильно записаны три уравнения реакций	3			
Правильно записаны два уравнения реакций	2			
Правильно записано одно уравнение реакции	1			
Все уравнения записаны неверно, или ответ отсутствует	0			
Максимальный балл	3			

11	Содержание верного ответа и указания по оцениванию (допускаются иные формулировки ответа, не искажающие его смысла)	Баллы			
	35				
	Записана правильная последовательность цифр				
	В последовательности цифр допущена одна ошибка	1			
	Последовательность цифр записана неверно	0			
	Максимальный балл	2			

/			\
/	1	1	١
(1	Z	
/	_	_	/

Содержание верного ответа и указания по оцениванию (допускаются иные формулировки ответа, не искажающие его смысла)	Баллы
Элементы ответа:	
1) CH_3 - CH = CH_2 + Br_2 \longrightarrow CH_3 - CH · CH_2 Br Br	
2) CH ₃ -CH ₂ -C ^O _H + H ₂	
Правильно записаны два уравнения реакций	2
Правильно записано одно уравнение реакции	1
Все уравнения записаны неверно	0
Максимальный балл	2

(13)

Содержание верного ответа и указания по оцениванию		
(допускаются иные формулировки ответа, не искажающие его смысла)		
Элементы ответа:		
Написаны уравнения реакций, соответствующие схеме:		
1) CH ₃ −CH ₂ −CH−CH ₃ + KOH → CH ₃ −CH ₂ −CH−CH ₃ + KCI		
ĊI ÓH		
2) CH ₃ -CH-CH ₂ -CH ₃ + CuO CH ₃ -C-CH ₂ -CH ₃ + Cu + H ₂ O OH		
3) Записано название вещества Х: бутанол-2		
Правильно записаны все элементы ответа	3	
Правильно записаны два элемента ответа	2	
Правильно записан один элемент ответа	1	
Все элементы ответа записаны неверно	0	
Максимальный балл	3	

14

Содержание верного ответа и указания по оцениванию	Баллы
(допускаются иные формулировки ответа, не искажающие его смысла)	1343131131
Элементы ответа:	
1) Определён объём воды, и определена концентрация хлора в ней:	
V (воды) = $2 \cdot 15 \cdot 25 = 750 \text{ м}^3$	
Концентрация хлора = $450 / 750 = 0.6 \text{ мг/м}^3$	
2) Сформулирован вывод о превышении ПДК хлора в воде: более	
0.5 MT/M^3 .	
3) Сформулировано одно предложение по снижению концентрации хлора	
в воде: замена хлора на дезинфицирующие средства, не содержащие хлора,	
или уменьшение массы использующегося хлора	
Ответ правильный и полный, содержит все названные выше элементы ответа	3
Правильно записаны два из названных выше элементов ответа	2
Правильно записан один из названных выше элементов ответа	1
Все элементы ответа записаны неверно	0
Максимальный балл	3

Содержание верного ответа и указания по оцениванию	
(допускаются иные формулировки ответа, не искажающие его смысла)	
Элементы ответа:	
1) Рассчитана масса раствора:	
m(p-pa) = 50 + 3 = 53 K	
2) Рассчитана массовая доля щавелевой кислоты:	
ω (щавелевой кислоты) = $3 \cdot 100 / 53 = 5,7\%$	
Ответ правильный и полный, содержит все названные выше элементы	2
Допущена ошибка в одном из элементов ответа	1
Все элементы ответа записаны неверно	0
Максимальный балл	2

Система оценивания выполнения всей работы

Максимальный балл за выполнение работы -33.

Рекомендуемая шкала перевода суммарного балла за выполнение ВПР в отметку по пятибалльной шкале

Отметка по пятибалльной шкале	«2»	«3»	«4»	«5»
Суммарный балл	0–10	11–19	20–27	28–33