

Проверочная работа по МАТЕМАТИКЕ

8 класс

Вариант 2

Инструкция по выполнению работы

На выполнение работы по математике даётся 90 минут. Работа содержит 19 заданий.

В заданиях, после которых есть поле со словом «Ответ», запишите ответ в указанном месте.

В заданиях, после которых есть поле со словами «Решение» и «Ответ», запишите решение и ответ в указанном месте.

В заданиях 4 и 8 нужно отметить точки на числовой прямой.

Если Вы хотите изменить ответ, зачеркните его и запишите рядом другой.

При выполнении работы можно пользоваться таблицей умножения и таблицей квадратов двузначных чисел. Запрещено пользоваться учебниками, рабочими тетрадями, справочниками, калькулятором.

При необходимости можно пользоваться черновиком. Записи в черновике проверяться и оцениваться не будут.

Советуем выполнять задания в том порядке, в котором они даны. Для экономии времени пропускайте задание, которое не удаётся выполнить сразу, и переходите к следующему. Постарайтесь выполнить как можно больше заданий.

Желаем успеха!

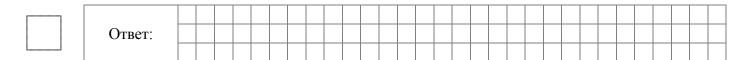
Таблица для внесения баллов участника

Номер задания	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
Баллы																

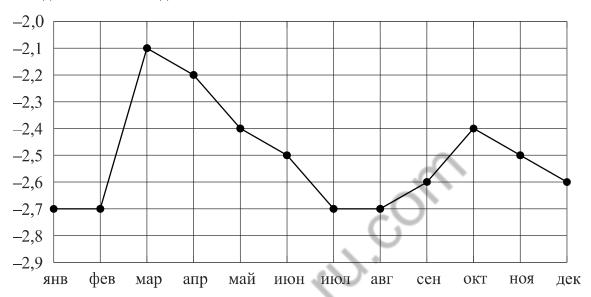
16(1)	16(2)	17	18	19	Сумма баллов	Отметка за работу

1 Найдите значение выражения $\frac{11}{4} \cdot \frac{5}{9} - \frac{19}{36}$.

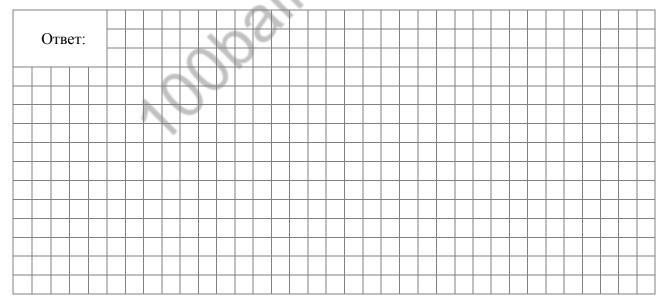
2 Решите уравнение $x^2 + 5x - 24 = 0$.


3 На кружок по математике записались семиклассники и восьмиклассники. Количество семиклассников, записавшихся на кружок, относится к количеству восьмиклассников как 3:5 соответственно. Сколько всего школьников записалось на кружок по математике, если среди них 9 семиклассников?

На координатной прямой отмечены числа a, b и c. Отметьте на этой прямой какое-нибудь число x так, чтобы при этом выполнялись три условия: x-a>0, b-x>0, x-c<0.



5 Дана функция $y = -\frac{6}{5}x + 9$. Найдите значение функции при x = 6.


(6)

Грунтовые воды — подземные воды, расположенные близко к поверхности земли. Грунтовые воды формируются прежде всего за счёт просачивания атмосферных осадков и воды из водоёмов. Уровень грунтовых вод обычно совпадает с уровнем воды в колодцах. В одном из колодцев, расположенном на участке земли с огородом, проводились ежемесячные измерения уровня воды в течение года. Жирными точками показан уровень воды в колодце в метрах. За нулевой уровень принимается уровень поверхности земли. Для наглядности точки соединены линией.

На диаграмме видно, что уровень воды в колодце заметно повысился в марте. Как можно объяснить весенний подъём, а затем снижение уровня грунтовых вод? Напишите несколько предложений, в которых обоснуйте своё мнение по этому вопросу.

7

На соревнованиях по синхронным прыжкам в воду в жюри входят девять судей. Пятеро оценивают синхронность выполнения прыжка. Двое судей оценивают исполнение прыжка первой спортсменкой, ещё двое — исполнение прыжка второй спортсменкой. Итоговая оценка за прыжок выставляется с помощью следующего алгоритма.

- 1. Из четырёх оценок за исполнение отбрасываются две наибольшая и наименьшая.
- 2. Из пяти оценок за синхронность отбрасываются две наибольшая и наименьшая.
- 3. Сумму оставшихся пяти оценок умножают на 0,6 и на коэффициент сложности прыжка.

В таблице указаны оценки за выступление пары спортсменок. Определите итоговую оценку, которую они получили за третий прыжок.

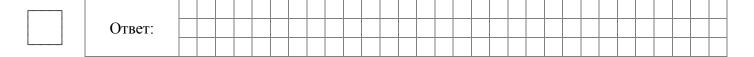
		Оценки судей											
Прыжки	Коэффициент сложности	си	нхронн п	ость вы ірыжко		пер	нение вой менкой	исполнение второй спортсменкой					
1	2	7,2	7,5	8,5	7,5	8	8,5	9	7	7,5			
2	3,2	5	7,5	6,5	6,5	7	6,5	7,2	7	7			
3	3,5	8,5	7	8	7	6,9	7,8	8,2	7,2	7,2			
4	2,8	7,2	5,9	6,8	8,2	8	8	7	7,5	6,9			
5	2,1	8	7,5	6,9	7	8,1	7,9	7	8	7,1			

Ответ

(8)

Отметьте на координатной прямой число $3\sqrt{15}$.

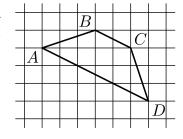
Ответ:


9

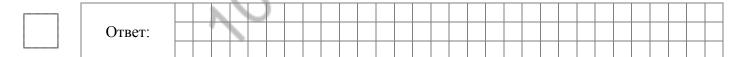
Найдите значение выражения $\left(\frac{1}{4a} - \frac{1}{5b}\right) : \left(\frac{b}{4} - \frac{a}{5}\right)$ при $a = \sqrt{32}$ и $b = \frac{1}{\sqrt{2}}$.

Otbet:

10

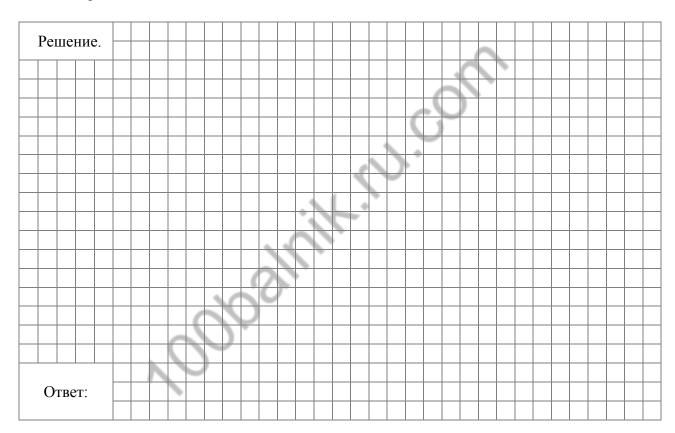

Соревнования по фигурному катанию проходят 3 дня. Всего запланировано 50 выступлений: в первый день — 18 выступлений, остальные распределены поровну между вторым и третьим днями. В соревнованиях участвует спортсмен М. Порядок выступлений определяется жеребьёвкой. Какова вероятность того, что спортсмен М. будет выступать во второй день соревнований?

Товар на распродаже уценили на 30%, а затем ещё на 15%. После двух уценок он стал стоить 1071 рубль. Сколько рублей стоил товар до распродажи?


12 На клетчатой бумаге с размером клетки 1×1 изображена трапеция ABCD. Во сколько раз основание AD больше высоты трапеции?

- Ответ:
- **13** В треугольнике *ABC* AC = BC, AB = 24, $tg A = \frac{\sqrt{5}}{2}$. Найдите длину стороны *AC*.

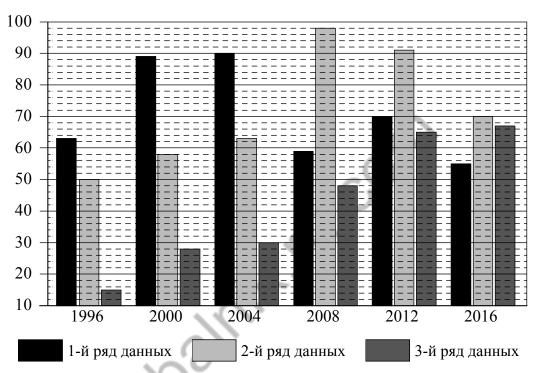
- **14**) Выберите верное утверждение и запишите в ответе его номер.
 - 1) В любом треугольнике есть хотя бы один острый угол.
 - 2) Центром окружности, описанной около любого треугольника, является точка пересечения медиан этого треугольника.
 - 3) Если один из углов равнобедренного треугольника равен 30° , то другой угол равен 60° .



Механический одометр (счётчик пройденного пути) для велосипеда — это прибор, который крепится на руле и соединён тросиком с редуктором, установленным на оси переднего колеса. При движении велосипеда спицы колеса вращают редуктор, это вращение по тросику передаётся счётчику, который показывает пройденное расстояние в километрах.

У Паши был велосипед с колёсами диаметром 18 дюймов и с одометром, который был настроен под данный диаметр колеса.

Когда Паша вырос, ему купили дорожный велосипед с колёсами диаметром 26 дюймов. Паша переставил одометр со своего старого велосипеда на новый, но не настроил его под диаметр колеса нового велосипеда.


В воскресенье Паша поехал кататься на велосипеде в парк. Когда он вернулся, одометр показал пройденное расстояние — 14,4 км. Какое расстояние на самом деле проехал Паша?

(16)

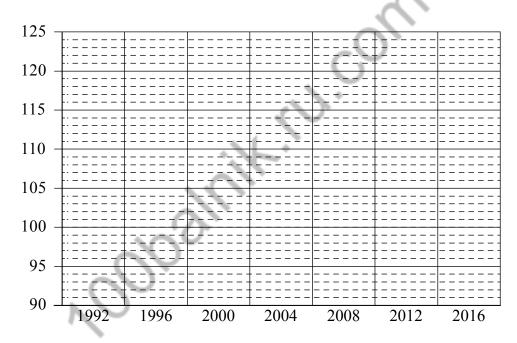
Летние Олимпийские игры — это спортивные соревнования, проходящие один раз в 4 года под руководством Международного олимпийского комитета. Первые Олимпийские игры современности прошли в 1896 году в Афинах, в них принимало участие 14 стран и было представлено 9 видов спорта. В 2016 году на XXXI Олимпийских играх в Рио-де-Жанейро присутствовало 207 команд, соревнующихся в 28 видах спорта.

На диаграмме три ряда данных показывают общее количество медалей по итогам летних Олимпийских игр, завоёванных в период с 1996 по 2016 год, командами трёх стран: Великобритании, России и Китая. Рассмотрите диаграмму и прочтите фрагмент сопровождающей статьи.

Команда Китайской Народной Республики впервые приняла участие в Олимпийских играх в 1952 году в Хельсинки. Во второй половине XX века и в XXI веке команда Китая стала главным конкурентом США в медальном зачёте на летних Олимпийских играх. Наибольшее количество медалей (98) команда Китая завоевала на Олимпиаде в Пекине в 2008 году.

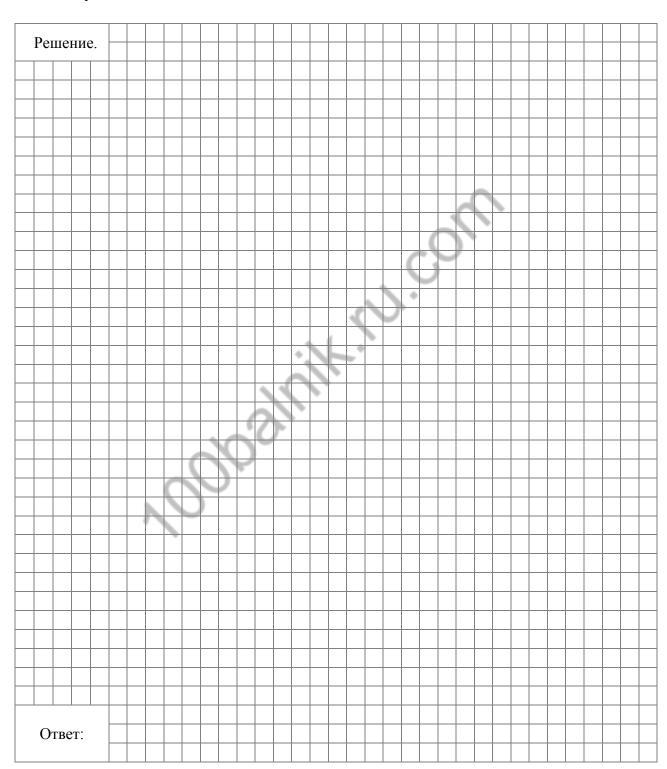
Россия впервые приняла участие в Олимпийских играх в 1900 году — в летней парижской Олимпиаде. Из российских спортсменов первую олимпийскую золотую медаль завоевал в 1908 году фигурист Николай Панин-Коломенкин на IV Олимпиаде в Лондоне. Россия очень хорошо выступила на Олимпиаде в Афинах в 2004 году, где получила 90 медалей. А в 2016 году Россия смогла завоевать лишь 55 медалей.

Великобритания была одной из 14 стран, участвовавших в первых Олимпийских играх в Афинах в 1896 году, и с тех пор спортсмены Великобритании не пропустили ни одной Олимпиады. Команда Великобритании является единственной выигравшей хотя бы одну золотую медаль на каждой летней Олимпиаде. Начиная с 1996 года количество медалей, завоёванных сборной Великобритании, неуклонно растёт, и в 2016 году команда Великобритании отставала от команды Китая всего на 3 медали.

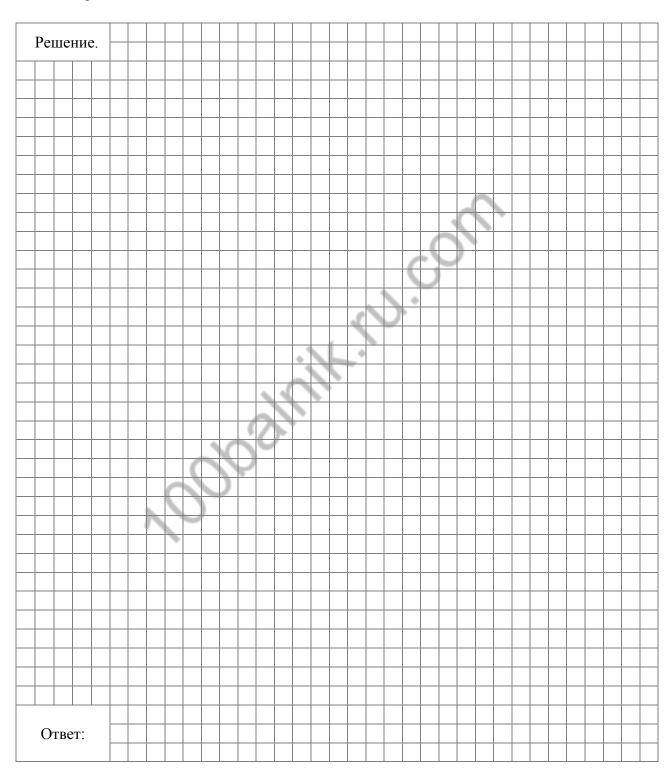

КОД

Лидером по общему количеству завоёванных медалей на летних Олимпийских играх является команда США. Наибольшее количество медалей (121) ей удалось завоевать на последней Олимпиаде в 2016 году, улучшив предыдущий результат на 18 медалей. В 1996 и 2004 годах команда США положила в свою копилку по 101 медали, а на Олимпийских играх 2000 года — на 8 медалей меньше. В 2008 году команда США завоевала на 10 медалей больше, чем на предыдущей Олимпиаде, а количество медалей, завоёванных американцами в 1992 году, было на одну больше, чем в 2008 году.

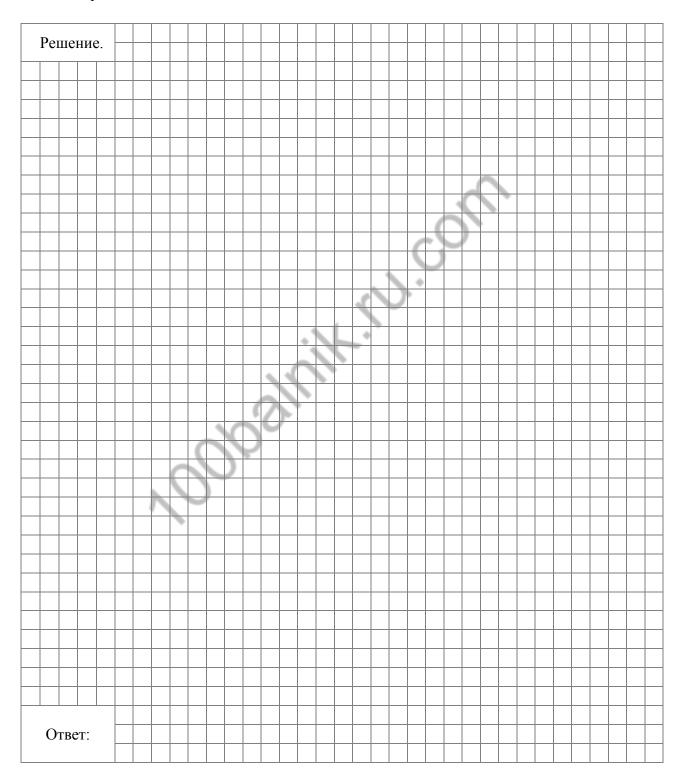
1) На основании прочитанного определите номер ряда данных на диаграмме, который соответствует количеству медалей, завоёванных командой России на летних Олимпийских играх.


Ответ:

2) По имеющемуся описанию постройте схематично диаграмму общего количества медалей, завоёванных командой США на летних Олимпийских играх в 1992–2016 годах.



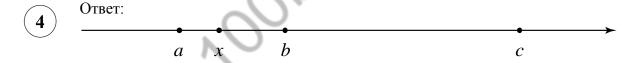
В прямоугольной трапеции ABCD с основаниями AD и BC диагональ AC является биссектрисой угла A, равного 45° . Найдите длину диагонали BD, если меньшее основание трапеции равно $11\sqrt{2}$.



Первый рабочий за час делает на 11 деталей больше, чем второй, и выполняет заказ, состоящий из 66 деталей, на 3 часа быстрее, чем второй рабочий, выполняющий такой же заказ. Сколько деталей в час делает второй рабочий?

Дима написал пять натуральных (необязательно различных) чисел, а потом Света вычислила все возможные попарные суммы этих чисел. Получилось всего три различных значения: 43, 50 и 57. Посмотрев на полученные Светой значения, Паша смог точно назвать наибольшее из написанных Димой чисел. Какое это число?

Система оценивания проверочной работы


Оценивание отдельных заданий

Номер задания	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	Итого
Баллы	1	1	1	1	1	2	1	2	1	1	1	1	1	1	2	2	1	2	2	25

Ответы

Номер задания	Правильный ответ
1	1
2	-8; 3
3	24
5	1,8
7	77,7
9	0,25
10	0,32
11	1800
13	18
14	1

Решения и указания к оцениванию

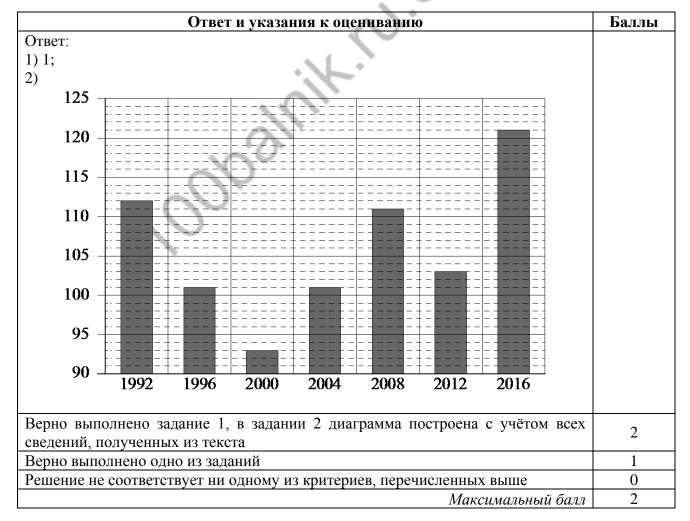
В качестве верного следует засчитать любой ответ, где число x лежит между числами a и b.

6
U

Решение и указания к оцениванию	Баллы
Решение.	
Повышение уровня грунтовых вод в марте связано с быстрым таянием снега.	
В апреле – июне уровень грунтовых вод снижался, потому что снег сошёл,	
осадков выпадало мало, температура воздуха повысилась, увеличилось	
испарение воды с поверхности земли, вода из колодца стала использоваться для	
полива.	
Следует принять в качестве верного любое рассуждение с правдоподобными	
объяснениями особенностей диаграммы	
В решении установлена прямая связь между весенним таянием снега	
и повышением уровня воды в колодце и приведены примеры различных	2
факторов, влияющих на снижение уровня грунтовых вод	
В решении рассмотрено влияние различных факторов на уровень воды	
в колодце, но прямая связь между таянием снега и повышением уровня	1
грунтовых вод не установлена	
Решение не соответствует ни одному из критериев, перечисленных выше	0
Максимальный балл	2

(8)

Ответ и указания к оцениванию	Баллы						
Ответ:							
$3\sqrt{15}$							
7 8 9 10 11 12 13 14							
Точка расположена в своём промежутке с целыми концами, учтено положение точки относительно середины отрезка							
Точка расположена в своём промежутке с целыми концами, но положение точки относительно середины отрезка неверное							
Решение не соответствует ни одному из критериев, перечисленных выше	0						
Максимальный балл	2						


12

Ответ: 3.

/	_	_
(1	5
/	_	$\boldsymbol{\mathcal{I}}$

Решение и указания к оцениванию	Баллы
Решение.	
Большое колесо сделает меньше оборотов, чем маленькое, проехав то же	
расстояние. Количество оборотов колеса и, стало быть, показания счётчика	
километров обратно пропорциональны диаметру колеса.	
Можно записать пропорцию $\frac{x}{14,4} = \frac{26}{18}$, где x — реальное расстояние.	
Найдём реальное расстояние: $x = \frac{13}{9} \cdot 14, 4 = 20,8$ км.	
Возможна другая последовательность действий и рассуждений.	
Ответ: 20,8 км	
Проведены все необходимые рассуждения, получен верный ответ	2
Проведены все необходимые рассуждения, но допущена одна арифметическая	1
ошибка	1
Решение не соответствует ни одному из критериев, перечисленных выше	0
Максимальный балл	2

17

Решение и указания к оцениванию	Баллы
Решение.	
Углы BCA и CAD равны как накрест B C	
лежащие при параллельных прямых ВС	
и AD и секущей AC , AC — биссектриса	
угла ВАД, следовательно,	
$\angle BCA = \angle CAD = \angle BAC.$	
Значит, треугольник ABC равнобедренный A H D	
$H AB = BC = 11\sqrt{2}$.	
Проведём высоту BH (см. рис.). Из прямоугольного треугольника ABH находим	
BH = 11. Значит, $CD = BH = 11$.	
Из прямоугольного треугольника <i>CBD</i> находим:	
$BD^2 = BC^2 + CD^2 = 11^2 \cdot 2 + 11^2 = 11^2 \cdot 3, BD = 11\sqrt{3}.$	
Допускается другая последовательность действий и рассуждений,	
обоснованно приводящая к верному ответу.	
Other: $11\sqrt{3}$	
Проведены необходимые рассуждения, получен верный ответ	1
Решение неверно или отсутствует	0
Максимальный балл	1

(18

Решение и указания к оцениванию	
Решение.	
Пусть второй рабочий делает за час x деталей, тогда первый рабочий делает	
за час $(x+11)$ деталей. Получаем уравнение:	
$\frac{66}{x} = \frac{66}{x+11} + 3,$ $66x + 726 = 66x + 3x^2 + 33x,$ $x^2 + 11x - 242 = 0,$ откуда $x_1 = 11, \ x_2 = -22.$	
Условию задачи удовлетворяет корень $x_1 = 11$.	
Допускается другая последовательность действий и рассуждений, обоснованно приводящая к верному ответу. Ответ: 11 деталей в час	
Обоснованно получен верный ответ	2
Проведены все необходимые рассуждения, но допущена одна арифметическая ошибка	1
Решение не ответствует ни одному из критериев, перечисленных выше	0
Максимальный балл	2

(19)

Решение и указания к оцениванию	Баллы			
Решение.				
Докажем, что среди написанных чисел есть одинаковые. Действительно, если все				
написанные числа разные, то различных попарных сумм должно быть не менее				
четырёх, например, суммы одного числа с четырьмя остальными. Значит, среди				
попарных сумм есть суммы двух одинаковых натуральных чисел. Такая сумма				
должна быть чётной, в нашем списке это число 50. Отсюда следует, что среди				
написанных есть число 25 и оно написано не меньше двух раз.				
Одинаковых чисел, отличных от 25, быть не может, иначе среди попарных сумм				
было бы ещё одно чётное число.				
Обозначим одно из трёх оставшихся чисел буквой x , тогда среди попарных сумм				
есть число $25 + x$, значит, x равно либо $57 - 25 = 32$, либо $43 - 25 = 18$.				
Наборы 25, 25, 25, 25, 18 и 25, 25, 25, 32 нам не подходят, так как в них всего				
две различные попарные суммы. Значит, был написан набор 25, 25, 25, 32, 18.				
Таким образом, наибольшее число — это 32.				
Возможна другая последовательность действий и рассуждений.				
Ответ: 32				
Обоснованно получен верный ответ	2			
Найден верный набор пяти натуральных чисел, но при этом ответ	1			
на поставленный вопрос неверный или отсутствует	1			
Решение не соответствует ни одному из критериев, перечисленных выше				
Максимальный балл	2			

Система оценивания выполнения всей работы

Максимальный балл за выполнение работы — 25.

Рекомендуемая таблица перевода баллов в отметки по пятибалльной шкале

Отметка по пятибалльной шкале	«2»	«3»	«4»	«5»
Первичные баллы	0–7	8–14	15–20	21–25